14 research outputs found

    Gulf Coast Ticks (Amblyomma maculatum) and Rickettsia parkeri, United States

    Get PDF
    Geographic distribution of Rickettsia parkeri in its US tick vector, Amblyomma maculatum, was evaluated by PCR. R. parkeri was detected in ticks from Florida, Georgia, Kentucky, Mississippi, Oklahoma, and South Carolina, which suggests that A. maculatum may be responsible for additional cases of R. parkeri rickettsiosis throughout much of its US range

    Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Detection of Ehrlichia ruminantium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rickettsial bacterium <it>Ehrlichia ruminantium </it>is the causative agent of heartwater, a potential zoonotic disease of ruminants transmitted by ticks of the genus <it>Amblyomma</it>. The disease is distributed in nearly all of sub-Saharan Africa and some islands of the Caribbean, from where it threatens the American mainland. This report describes the development of two different loop-mediated isothermal amplification (LAMP) assays for sensitive and specific detection of <it>E. ruminantium</it>.</p> <p>Results</p> <p>Two sets of LAMP primers were designed from the pCS20 and <it>sodB </it>genes. The detection limits for each assay were 10 copies for pCS20 and 5 copies for <it>sodB</it>, which is at least 10 times higher than that of the conventional pCS20 PCR assay. DNA amplification was completed within 60 min. The assays detected 16 different isolates of <it>E. ruminantium </it>from geographically distinct countries as well as two attenuated vaccine isolates. No cross-reaction was observed with genetically related Rickettsiales, including zoonotic <it>Ehrlichia </it>species from the USA. LAMP detected more positive samples than conventional PCR but less than real-time PCR, when tested with field samples collected in sub-Saharan countries.</p> <p>Conclusions</p> <p>Due to its simplicity and specificity, LAMP has the potential for use in resource-poor settings and also for active screening of <it>E. ruminantium</it> in both heartwater-endemic areas and regions that are at risk of contracting the disease.</p

    Geographic distribution and genetic diversity of the Ehrlichia sp. from Panola Mountain in Amblyomma americanum

    Get PDF
    Background: A novel Ehrlichia, closely related to Ehrlichia ruminantium, was recently discovered from Panola Mountain State Park, GA, USA. We conducted a study to determine if this agent was recently introduced into the United States. Methods: We developed a sensitive PCR assay based on the conserved gltA (citrate synthase) gene and tested DNA samples extracted from 1964 field-collected and 1835 human-biting Amblyomma americanum from 23 eastern states of the USA. Results: The novel agent was detected in 36 ticks collected from 10 states between 1998 and 2006. Infected ticks were collected both from vegetation (n = 14, 0.7%) and from humans (n = 22, 1.2%). Fragments of the conserved gltA gene and the variable map1 gene were sequenced from positive samples. Two distinct clades, with 10.5% nucleic acid divergence over the 730 bp map1 sequence, were identified. Conclusion: These data suggest that the Panola Mountain Ehrlichia was not recently introduced to the United States; this agent has an extensive distribution throughout the range of its tick vector, has been present in some locations for several years, and displays genetic variability. Furthermore, people in several states were exposed to this agent through the bite of infected ticks, underscoring the potential public health risk of this emerging ehrlichiosis

    Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) Removed from Humans

    No full text
    We used a nested PCR with Borrelia flagellin gene (flaB) primers and DNA sequencing to determine if Borrelia lonestari was present in Amblyomma americanum ticks removed from military personnel and sent to the Tick-Borne Disease Laboratory of the U.S. Army Center for Health Promotion and Preventive Medicine. In our preliminary investigation, we detected Borrelia sequences in 19 of 510 A. americanum adults and nymphs from Ft. A. P. Hill, Va. During the 2001 tick season, the flaB primers were used to test all A. americanum samples as they were received, and 29 of 2,358 A. americanum samples tested individually or in small pools were positive. PCRs with 2,146 A. americanum samples in 2002 yielded 26 more Borrelia-positive samples. The positive ticks in 2001 and 2002 were from Arkansas, Delaware, Kansas, Kentucky, Maryland, New Jersey, North Carolina, Tennessee, and Virginia. The last positive sample of the 2001 season was a pool of larvae. To further investigate larval infection, we collected and tested questing A. americanum larvae from Aberdeen Proving Ground, Md.; 4 of 33 pools (40 larvae per pool) were positive. Infection of unfed larvae provides evidence of the maintenance of B. lonestari by means of transovarial transmission. Sequence analysis revealed that the amplicons were identical to sequences of the B. lonestari flaB gene in GenBank. Despite the low prevalence of infection, the risk of B. lonestari transmission may be magnified because A. americanum is often abundant and aggressive, and many tick bite victims receive multiple bites

    New Spotted Fever Group Rickettsia in a Rhipicephalus turanicus Tick Removed from a Child in Eastern Sicily, Italy

    No full text
    A new genotype of spotted fever group Rickettsia (SFGR) was identified in Rhipicephalus turanicus from eastern Sicily. On the basis of current molecular criteria, the genetic characteristics obtained from multiple locus sequence typing satisfy the requirements for Candidatus status of this SFGR. Further detection and identification of this SFGR during entomological and clinical surveys will be required to establish the prevalence of this Rickettsia and its potential pathogenicity for humans
    corecore