61 research outputs found
Influence of implant‐specific radiation doses on peri‐implant hard and soft tissue: An observational pilot study
Objectives: The aim of this study was to investigate the influence of real implant-bed-specific radiation doses on peri-implant tissue health in head and neck cancer (HNC) patients after radiotherapy.
Material and methods: Specific radiation doses in the area of 81 implants, in 15 irradiated HNC patients, were analyzed by matching data from the radiotherapy planning system with those of three-dimensional follow-up scans after implantation. Peri-implant bone resorption was measured radiographically after 1 and 3 years, and peri-implant tissue health was evaluated clinically. Individual parameters, such as age, gender, and localization, regarding the implant-specific radiation dose distribution were analyzed statistically.
Results: The mean implant-bed-specific radiation dose was high, with 45.95 Gy to the mandible and 29.02 Gy to the maxilla, but significantly lower than the mean total dose to the tumor bed. Peri-implant bone resorption correlated with local inflammation and plaque. After 1 year, women temporarily showed significantly more bone loss than men and implant-specific radiation dose had a significant impact on peri-implant bone loss after 3 years.
Conclusions: The presented method is a feasible option to define precise implant-bed-specific radiation doses for research or treatment planning purposes. Implant-based dental restoration after radiotherapy is a relatively safe procedure, but a negative radiation dose-dependent long-term effect on peri-implant bone resorption calls for interdisciplinary cooperation between surgeons and radio-oncologists to define high-risk areas
Total body irradiation as part of conditioning regimens in childhood leukemia—long-term outcome, toxicity, and secondary malignancies
Background: Total body irradiation (TBI) is an established part of conditioning regimens prior to stem cell transplantation in childhood leukemia but is associated with long-term toxicity. We retrospectively analyzed survival, long-term toxicity, and secondary malignancies in a pooled cohort of pediatric patients (pts.) treated with the same TBI regimen.
Methods: Analyzed were 109 pts. treated between September 1996 and November 2015. Conditioning treatment according to EBMT guidelines and the ALL SCTped 2012 FORUM trial consisted of chemotherapy (CT) and TBI with 2 Gy b.i.d. on 3 consecutive days to a total dose of 12 Gy. Median follow-up was 97.9 months (2-228 months).
Results: Overall survival (OS) in our cohort at 2, 5, and 10 years was 86.1, 75.5, and 63.0%, respectively. Median survival was not reached. Long-term toxicity developed in 47 pts. After chronically abnormal liver and kidney parameters in 31 and 7 pts., respectively, growth retardation was the most frequent finding as seen in 13 pts. Secondary malignancies were rare (n = 3).
Conclusion: TBI-containing conditioning regimens in pediatric stem cell transplantation (SCT) are highly effective. Efforts to replace TBI- with CT-containing regimens have only been successful in subgroups of pts. Although we could show long-term toxicity in 43% of pts., overall survival was 63% at 10 years. Still, long-term effects such as growth retardation can permanently impact the pts.' quality of life and functioning. Along with new substances, efforts should be undertaken to optimize TBI techniques and accompany the treatment by systematic follow-up programs beyond 5 years to improve detection of rare events
Radiotherapeutic treatment options for oligotopic malignant liver lesions
Background: Several radiotherapeutic approaches for patients with oligotopic malignant liver lesions unfit for surgical resection exist. The most advanced competitive techniques are high-dose-rate (HDR) brachytherapy, Cyberknife, volume-modulated-arc therapy (VMAT) and Tomotherapy. We evaluated the optimal technique by a planning study for a single ablative dose with different lesion sizes.
:Methods We compared dose distributions of HDR-brachytherapy with stereotactic ablative radiotherapy using the Cyberknife, VMAT or Tomotherapy. Tumor-control-probabilities (TCP), normal-tissue-complication-probabilities (NTCP) were determined in a theoretical framework applying a single dose of 20 Gy (demanding 95% coverage) for intrahepatic lesions of 1-5 cm in size. We evaluated therapeutic ratios by TCP (mean dose in the lesion) relative to high-dose (conformality) or low-dose liver exposition in dependency on the lesion size for each technique. In addition, we considered treatment times and accuracy (clinical target volume vs planning target volume).
Results: HDR-brachtherapy has the highest therapeutic ratios with respect to high-dose as well as low-dose liver exposition even for extended lesions, and the Cyberknife being suited second best. However, for lesions >= 3 cm diameter the therapeutic ratios of all ablative techniques are increasingly converging, and better tolerance and shorter treatment times of noninvasive external techniques become more important. On the other hand, mean tumor doses of HDR-brachytherapy of near 60 Gy are unattainable by the other techniques gaining only 22-34 Gy, and the conformality of HDR-brachytherapy is still rather good for lesions >= 3 cm diameter.
Conclusions: HDR-brachytherapy is by far the most effective technique to treat intrahepatic lesions by a single fraction, but sparing of the surroundings declines with increasing lesion size and approaches the benchmarks of external beam radiosurgery techniques. External beam radiotherapy has the advantage to use suitable fractionation schedules
68Ga-PSMA-PET/CT-based radiosurgery and stereotactic body radiotherapy for oligometastatic prostate cancer
Background:
Androgen deprivation therapy (ADT) remains the standard therapy for patients with oligometastatic prostate cancer (OMPC). Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT)-based stereotactic body radiotherapy (SBRT) is emerging as an alternative option to postpone starting ADT and its associated side effects including the development of drug resistance. The aim of this study was to determine progression free-survival (PFS) and treatment failure free-survival (TFFS) after PSMA-PET/CT-based SBRT in OMPC patients. The efficacy and safety of single fraction radiosurgery (SFRS) and ADT delay were investigated.
Methods:
Patients with ≤ 5 metastases from OMPC, with/without ADT treated with PSMA-PET/CT-based SBRT were retrospectively analyzed. PFS and TFFS were primary endpoints. Secondary endpoints were local control (LC), overall survival (OS) and ADT-free survival (ADTFS).
Results:
Fifty patients with a total of 75 metastases detected by PSMA-PET/CT were analyzed. At the time of SBRT, 70% of patients were castration-sensitive. Overall, 80% of metastases were treated with SFRS (median dose 20 Gy, range: 16-25). After median follow-up of 34 months (range: 5-70) median PFS and TFFS were 12 months (range: 2-63) and 14 months (range: 2-70), respectively. Thirty-two (64%) patients had repeat oligometastatic disease. Twenty-four (48%) patients with progression underwent second SBRT course. Two-year LC after SFRS was 96%. Grade 1 and 2 toxicity occurred in 3 (6%) and 1 (2%) patients, respectively. ADTFS and OS rates at 2-years were 60.5% and 100%, respectively. In multivariate analysis, TFFS significantly improved in patients with time to first metastasis (TTM) >36 months (p = 0.01) and PSA before SBRT ≤ 1 ng/ml (p = 0.03).
Conclusion:
For patients with OMPC, SBRT might be used as an alternative to ADT. This way, the start/escalation of palliative ADT and its side effects can be deferred. Metastases treated with PSMA-PET/CT-based SFRS reached excellent LC with minimal toxicity. Low PSA levels and longer TTM predict elongated TFFS
Radiosurgery and fractionated stereotactic body radiotherapy for patients with lung oligometastases
Background: Patients with oligometastatic disease can potentially be cured by using an ablative therapy for all active lesions. Stereotactic body radiotherapy (SBRT) is a non-invasive treatment option that lately proved to be as effective and safe as surgery in treating lung metastases (LM). However, it is not clear which patients benefit most and what are the most suitable fractionation regimens. The aim of this study was to analyze treatment outcomes after single fraction radiosurgery (SFRS) and fractionated SBRT (fSBRT) in patients with lung oligometastases and identify prognostic clinical features for better survival outcomes.
Methods: Fifty-two patients with 94 LM treated with SFRS or fSBRT between 2010 and 2016 were analyzed. The characteristics of primary tumor, LM, treatment, toxicity profiles and outcomes were assessed. Kaplan-Meier and Cox regression analyses were used for estimation of local control (LC), overall survival (OS) and progression-free survival.
Results: Ninety-four LM in 52 patients were treated using SFRS/fSBRT with a median of 2 lesions per patient (range: 1-5). The median planning target volume (PTV)-encompassing dose for SFRS was 24 Gy (range: 17-26) compared to 45 Gy (range: 20-60) in 2-12 fractions with fSBRT. The median follow-up time was 21 months (range: 3-68). LC rates at 1 and 2 years for SFSR vs. fSBRT were 89 and 83% vs. 75 and 59%, respectively (p = 0.026). LM treated with SFSR were significantly smaller (p = 0.001). The 1 and 2-year OS rates for all patients were 84 and 71%, respectively. In univariate analysis treatment with SFRS, an interval of ≥12 months between diagnosis of LM and treatment, non-colorectal cancer histology and BED 70% and time to first metastasis ≥12 months. There was no grade 3 acute or late toxicity.
Conclusions: Longer time to first metastasis, good KPS and N0 predicted better OS. Good LC and low toxicity rates were achieved after short SBRT schedules
Carcinoma of Unknown Primary and the 8th Edition TNM Classification for Head and Neck Cancer
Objective: In the 8th Edition TNM Classification for Head and Neck Cancer, the classification for carcinoma of unknown primary (CUP) changed in addition to oropharyngeal carcinomas. The current classification considers extranodal extension (ENE), determination of p16 (surrogate marker for human papillomavirus), and detection of Epstein-Barr virus (EBV). The aim of this study was to investigate the influence of the new classification on the prognosis of p16-positive and p16-negative CUP and the impact of EBV proof.
Methods: Clinical and pathological data from patients with CUP of the head and neck between 2009 and 2018 were evaluated. The 7th (UICC7) and 8th (UICC8) edition of the Union for International Cancer Control staging system were applied and compared.
Results: There were 97 patients treated, 26.8% women and 73.2% men. The average age at initial diagnosis was 64.6 years. Of which, 58.8% had a documented history of smoking, 37.1% were positive for p16, 4.1% were positive for EBV, and 66% had ENE. Most of the patients were at stage III/IVa (78.4% according to UICC7). According to UICC8, p16+ patients were mainly at stage I (86.1%), and p16- at stage IVb (56.1%). P16 status (P = .002), ENE (P = .001), nodal category (TNM7, P < .001), UICC stage (TNM7, P < .001) and UICC stage (TNM8, P < .001) had a significant impact on survival in the univariate analysis. The 8th TNM classification resulted in a downstaging of p16-positive CUP syndromes and an upstaging of p16-negative syndromes.
Conclusion: The 8th TNM classification shows the lower UICC stage in p16-positive CUP syndromes. The prognostic significance for survival has improved from the 7th to the 8th TNM classification.
LEVEL OF EVIDENCE USING THE 2011 OCEBM: Level 3
PET measured hypoxia and MRI parameters in re-irradiated head and neck squamous cell carcinomas: findings of a prospective pilot study [version 2; peer review: 2 approved]
Background: Tumor hypoxia measured by dedicated tracers like [ 18F]fluoromisonidazole (FMISO) is a well-established prognostic factor in head and neck squamous cell carcinomas (HNSCC) treated with definitive chemoradiation (CRT). However, prevalence and characteristics of positron emission tomography (PET) measured hypoxia in patients with relapse after previous irradiation is missing. Here we report imaging findings of a prospective pilot study in HNSCC patients treated with re-irradiation.
Methods: In 8 patients with recurrent HNSCC, diagnosed at a median of 18 months after initial radiotherapy/CRT, [ 18F]fluorodeoxyglucose (FDG)-PET/CT (n=8) and FMISO-PET/MRI (n=7) or FMISO-PET/CT (n=1) were performed. Static FMISO-PET was performed after 180 min. MRI sequences in PET/MRI included diffusion-weighted imaging with apparent diffusion coefficient (ADC) values and contrast enhanced T1w imaging (StarVIBE). Lesions (primary tumor recurrence, 4; cervical lymph node, 1; both, 3) were delineated on FDG-PET and FMISO-PET data using a background-adapted threshold-based method. SUV max and SUV mean in FDG- and FMISO-PET were derived, as well as maximum tumor-to-muscle ratio (TMR max) and hypoxic volume with 1.6-fold muscle SUV mean (HV 1.6) in FMISO-PET. Intensity of lesional contrast enhancement was rated relative to contralateral normal tissue. Average ADC values were derived from a 2D region of interest in the tumor.
Results: In FMISO-PET, median TMR max was 1.7 (range: 1.1-1.8). Median HV 1.6 was 0.05 ml (range: 0-7.3 ml). Only in 2/8 patients, HV 1.6 was ≥1.0 ml. In FDG-PET, median SUV max was 9.3 (range: 5.0-20.1). On contrast enhanced imaging four lesions showed decreased and four lesions increased contrast enhancement compared to non-pathologic reference tissue. Median average ADC was 1,060 ×10 6 mm 2/s (range: 840-1,400 ×10 6 mm 2/s).
Conclusions: This pilot study implies that hypoxia detectable by FMISO-PET may not be as prevalent as expected among loco-regional recurrent, HPV negative HNSCC. ADC values were only mildly reduced, and contrast enhancement was variable. The results require confirmation in larger sample sizes
External application of liver compresses to reduce fatigue in patients with metastatic cancer undergoing radiation therapy, a randomized clinical trial
Background: Liver compresses are frequently used in integrative medicine as supportive therapy during cancer treatment in order to reduce fatigue. We performed a pilot study to test whether the external application of yarrow liver compresses impacts fatigue in patients with metastatic cancer undergoing radiation therapy.
Methods: A randomized prospective pilot trial was performed including patients with brain metastasis or bone metastasis of solid tumors. Patients underwent either palliative radiation therapy (RT) of the metastatic lesions (control group) over two weeks or the same RT with additional external application of yarrow liver compresses once daily during RT. The primary objective was improvement on the general fatigue subscale of the multidimensional fatigue inventory (MFI-20) at the end of treatment, where a mean difference of two points is considered clinically relevant. Secondary objectives included psychological distress, quality of life and qualitative analysis with self-established visual analogue scales (VAS). Mean differences in general fatigue at the end of treatment compared to baseline were analyzed using the ANCOVA test.
Results: From 09/2017 to 08/2019 a total of 39 patients were randomized. Due to drop outs 24 patients (12 per group) were available for analysis. Patients in the intervention group received a mean number of 10.5 (range, 7-14) applications of yarrow liver compresses. The mean improvement at the end of therapy on the general fatigue subscale of the MFI-20 was 2 points in favor of the intervention group (p = 0.13), and all other MFI-20 subscales showed at least a trend towards improvement in favor of the intervention group. Likewise, psychological distress and VAS data was improved, the latter reaching statistical significance for the symptoms fatigue, tension and lack of drive. Major toxicities were not observed.
Conclusions: External application of liver compresses appears to reduce fatigue within a clinical relevant range in patients with metastatic cancer undergoing radiation therapy. Trial registration: ISRCTN, ICTRP DRKS0001299
Prognostic Factors Predict Oncological Outcome in Older Patients With Head and Neck Cancer Undergoing Chemoradiation Treatment
Purpose: Older patients with head and neck cancer (HNC) represent a challenging group, as frailty and comorbidities need to be considered. This study aimed to evaluate the efficacy and side effects of curative and palliative (chemo) radiation ([C]RT) with regard to basic geriatric screening in older patients.
Methods: This study included HNC patients aged >= 70 years who were treated with curative or palliative (C)RT. Clinicopathological data including Charlson Comorbidity Index (CCI), Karnofsky performance status (KPS), and treatment data were analyzed as predictors of overall survival (OS).
Results: A total of 271 patients (median age, 74 years) were enrolled. The majority had UICC stage III/IV (90%) and underwent curative treatment (85.2%). A total of 144 (53.1%) patients received definitive and 87 (32.1%) had adjuvant (C)RT. Overall, 40 patients (14.8%) received palliative (C)RT. Median follow-up duration (curative setting) was 87 months, and the 2- and 5-year OS rates were 57.8 and 35.9%, respectively. Median OS was significantly different for age ≤75 vs. >75 years, CCI vs. ≥6, KPS ≥70 vs. <70%, Tx/T1/T2 vs. T3/T4, and adjuvant vs. definitive (C)RT, respectively. Age 70-75 years (p = 0.004), fewer comorbidities when CCI < 6 (p = 0.014), good KPS ≥70% (p = 0.001), and adjuvant (C)RT (p = 0.008) independently predicted longer survival. Palliative RT resulted in a median OS of 4 months.
Conclusion: Older age, lower KPS, higher CCI, and definitive (C)RT are indicators of worse survival in older patients with HNC treated curatively. Without a comprehensive geriatric assessment in patients aged >75 years, the KPS and CCI can be useful tools to account for "fitness, vulnerability or frailty" to help in treatment decision-making
Image-guided robotic radiosurgery for the treatment of arteriovenous malformations
Cerebral arteriovenous malformations (AVMs) are challenging lesions, often requiring multimodal interventions; however, data on the efficacy of stereotactic radiosurgery for cerebral AVMs are limited. This study aimed to evaluate the clinical and radiographic results following robotic radiosurgery, alone or in combination with endovascular treatment, and to investigate factors associated with obliteration and complications in patients with AVM
- …