5 research outputs found
Court Interpreter Training in the Language Laboratory
Demographic studies and statistics from state and federal courts indicate agrowing need for Spanish-English court interpreters with special training in consecutiveand simultaneous court interpretation. The authors conducted a survey of 466 ofCalifornia's Spanish-English court interpreters to determine what the Spanish-Englishcourt interpreter's strongest skills needs are. Survey results are reported in this article,and the five strongest skills training needs are identified. The authors indicate how thelanguage laboratory may efficiently be used to develop and enhance these five skillsand how it may best serve a court interpreter training program. Emphasis is onapplying the work of G.A. Miller and the training techniques of Robert Ingram toSpanish-English court interpreter training
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Recommended from our members
Novel anti-filamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma
Identification of tumor-derived proteins in the circulation may allow for early detection of cancer and evaluation of therapeutic responses. To identify circulating tumor-derived proteins, mice were immunized with concentrated culture medium conditioned by human breast cancer cells. Antibodies generated by hybridomas were screened against conditioned media from both normal epithelial cells and tumor cells. Antibody selectively reacting with tumor cell-conditioned media was further characterized. This led to the development of a monoclonal antibody (Alper-p280) that reacts with a newly identified 280-kDa secreted variant of human filamin-A. Circulating filamin-A was detected in patient plasma samples using Alper-p280 in an ELISA assay. Human plasma samples from 134 patients with brain, breast, or ovarian cancer, 15 patients with active arthritis, and 76 healthy controls were analyzed. Filamin-A protein levels in human cell lines and tissues were analyzed by western blotting, immunohistochemistry, and electron and confocal microscopy. Circulating filamin-A was detected in the plasma of 109 of 143 patients with breast cancer and primary brain tumors. Plasma levels of filamin-A showed 89.5% sensitivity (95% confidence interval [CI] = 0.67% to 0.99%) and 97.8% specificity (95% CI = 0.88% to 0.99%) for glioblastoma at a cut-off of 21.0 ng/mL. Plasma levels of filamin-A (>36.0 ng/mL) had 96.7% sensitivity (95% CI = 0.80% to 0.99%) and 67.8% specificity (95% CI = 0.54% to 0.79%) for metastatic breast cancer. Filamin-A levels were increased in malignant breast or brain tissues, but not in normal control tissues. Filamin-A localized to lysosomes in MDA.MB.231 breast cancer cells, but not in normal human mammary epithelial cells, suggesting that filamin-A may undergo cancer-specific processing. Plasma filamin-A appears to be a specific and sensitive marker for patients with high-grade astrocytoma or metastatic breast cancer. Additional novel cancer biomarkers have been identified and are being developed alongside Alper-p280 for use in diagnosis of breast carcinoma and high-grade astrocytoma, and for use in the evaluation of therapeutic responses