12,226 research outputs found

    A comparison of UV surface brightness and HI surface densities for spiral galaxies

    Get PDF
    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies

    High resolution observations of the L1551 bipolar outflow

    Get PDF
    The nearby dark cloud Lynds 1551 contains one of the closest examples of a well-collimated bipolar molecular outflow. This source has the largest angular size of any known outflow and was the first bipolar outflow to be detected. The outflow originates from a low-luminosity young stellar object, IRS-5. Optical and radio continuum observations show the presence of a highly collimated, ionized stellar wind orginating from close to IRS-5 and aligned with the molecular outflow. However, we have little information on the actual mechanism that generates the stellar wind and collimates it into opposed jets. The Very Large Array (VLA) observations indicate that the winds originate within 10(15) cm of IRS-5, unfortunately at a size scale difficult to resolve. For these reasons, observations of the structure and dynamics of the hypersonic molecular gas may provide valuable information on the origin and evolution of these outflows. In addition, the study of the impact of the outflowing gas on the surrounding molecular material is essential to understand the consequence these outflows have on the evolution and star formation history of the entire cloud. Moriarty-Schieven et al. (1986) obtained a oversampled map of the CO emission of a portion of both the blueshifted and redshifted outflows in LI551 using Five College Radio Astronomy Observatory 14 m telescope. The oversampled maps have been reconstructed to an effective angular resolution of 20 arcsec using a maximum entropy algorithm. A continuation of the study of Moriarty-Schieven et al. is presented. The entire L1551 outflow has now been mapped at 12 arcsec sampling requiring roughly 4000 spectra. This data has been constructed to 20 arcsec resolution to provide the first high resolution picture of the entire L1551 outflow. This new data has shown that the blueshifted lobe is more extended than previously thought and has expanded downstream sufficiently to break out of the dense molecular cloud, but the redshifted outflow is still confined within the molecular cloud. Details of the structure and kinematics of the high velocity gas are used to test the various models of the origin and evolution of outflows

    Ancient oceans and Martian paleohydrology

    Get PDF
    The global model of ocean formation on Mars is discussed. The studies of impact crater densities on certain Martian landforms show that late in Martian history there could have been coincident formation of: (1) glacial features in the Southern Hemisphere; (2) ponded water and related ice features in the northern plains; (3) fluvial runoff on Martian uplands; and (4) active ice-related mass-movement. This model of transient ocean formation ties these diverse observations together in a long-term cyclic scheme of global planetary operation

    TDOA based positioning in the presence of unknown clock skew

    Get PDF
    Cataloged from PDF version of article.This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramer-Rao ´ lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    Rotation In Young Stars

    Get PDF
    The smallest molecular cores observed to date have at least ∼6 orders of magnitude greater angular momentum per unit mass than the Sun, suggesting that they would greatly exceed the breakup velocity if no angular momentum was lost during the star formation process. Therefore, an angular momentum regulation mechanism must be at work in the pre-main-sequence phase, and disks are often invoked as the solution to the angular momentum problem. Thanks to large-format CCDs, more than 1000 periods for young stars are now known (with more being presented at this conference), and with the Spitzer Space Telescope, we have the ability to get reliable circumstellar disk indicators for many 1000s of stars at once. Now, for the first time, we may have enough stars to start to constrain the angular momentum loss mechanism in a meaningful fashion. In this contribution, we review the observations made to date of rotation in pre-main-sequence low-mass stars

    Improved flux limits for neutrinos with energies above 1022^{22} eV from observations with the Westerbork Synthesis Radio Telescope

    Get PDF
    Particle cascades initiated by ultra-high energy (UHE) neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nano seconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 hours of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4×10224\times10^{22} eV.Comment: Submitted to Phys. Rev. Let
    corecore