197 research outputs found

    Environmental tradeoffs of agricultural growth in Russian regions and possible sustainable pathways for 2030

    Get PDF
    The paper analyses the current ecological consequences of agricultural growth in Russia's main regions (oblast level) during 2011-2019. Our main hypothesis was that local environmental risks, like waste concentration, would be closely related to global climate risks such as greenhouse gas (GHG) emissions from the production of crops, meat, milk, eggs, and from land use change (LUC) activities leading to a larger carbon footprint. We first analyze official data for agricultural waste and find that 30% of it is concentrated in just two regions (Belgorod and Kursk), while they produce only 10% of agricultural value of Russia. Next, we find that manure nutrients have a high concentration in regions where the livestock production is not balanced with appropriate nutrient use on croplands (Dagestan, Astrakhan, Leningrad, and Pskov regions) which might lead to the pollution of soils and local waters. Next, we test the GLOBIOM partial equilibrium model to evaluate proper agricultural protein production quantities in Russian regions and respective GHG emissions from crop, livestock and land use change activities. We find that 21% of the GHG emission in 2019 came from the conversion of former abandoned agricultural land into cropland (starting from2011). While some regions such as Krasnodar, Rostov, and Stavropol increase productivity with low carbon footprint, others, like Amur and Bryansk, increase production by cropland expansion without respective productivity growth which leads to higher carbon footprint. Our results for livestock operations show that the main hypothesis did not hold up because regions which increase meat production, like Belgorod, Kursk, Pskov, and Leningrad, have a lower carbon footprint due to the production of pork meat and poultry which have lower GHG emissions due to specific digestion. On the other hand, these regions experience a higher environmental footprint due to the large concentration of waste which could be harmful for local ecosystems. Finally, we use the model to project possible future development up to 2030. Our results show the possible growth of crop and livestock products in most of the regions driven by external demand for food. The extensive scenario shows additional GHG emissions from cropland expansion, while the intensive scenario reveals a larger growth rate accompanied by productivity growth and lower carbon footprint, which is essential in harmonizing the current agricultural and climate policy of Russia

    LISA Constraints on an Intermediate-Mass Black Hole in the Galactic Centre

    Full text link
    Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A^\star. We argue that this method is the most effective for IMBHs with masses 103MMIMBH105M10^3\,M_\odot\lesssim M_{\rm IMBH}\lesssim 10^5\,M_\odot and distances of 0.10.1 mpc to 22 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel.Comment: 9 pages, 4 figures. Accepted for publication in MNRA

    A proof-of-concept neural network for inferring parameters of a black hole from partial interferometric images of its shadow

    Full text link
    We test the possibility of using a convolutional neural network to infer the inclination angle of a black hole directly from the incomplete image of the black hole's shadow in the uvuv-plane. To this end, we develop a proof-of-concept network and use it to explicitly find how the error depends on the degree of coverage, type of input and coverage pattern. We arrive at a typical error of 1010^\circ at a level of absolute coverage 1%1\% (for a pattern covering a central part of the uvuv-plane), 0.3%0.3\% (pattern covering the central part and the periphery, the 0.3%0.3\% referring to the central part only), and 14%14\% (uniform pattern). These numbers refer to a network that takes both amplitude and phase of the visibility function as inputs. We find that this type of network works best in terms of the error itself and its distribution for different angles. In addition, the same type of network demonstrates similarly good performance on highly blurred images mimicking sources nearing being unresolved. In terms of coverage, the magnitude of the error does not change much as one goes from the central pattern to the uniform one. We argue that this may be due to the presence of a typical scale which can be mostly learned by the network from the central part alone.Comment: 12 pages, 10 figures. For the code and trained models, see https://bitbucket.org/cosmoVlad/neuro-rep

    The Brans-Dicke-Rastall theory

    Get PDF
    We formulate a theory combining the principles of a scalar-tensor gravity and Rastall's proposal of a violation of the usual conservation laws. We obtain a scalar-tensor theory with two parameters ω\omega and λ\lambda, the latter quantifying the violation of the usual conservation laws. The only exact spherically symmetric solution is that of Robinson-Bertotti besides Schwarzschild solution. A PPN analysis reveals that General Relativity results are reproduced when λ=0\lambda = 0. The cosmological case displays a possibility of deceleration/acceleration or acceleration/deceleration transitions during the matter dominated phase depending on the values of the free parameters.Comment: 17 pages, 3 figure

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
    corecore