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Abstract We formulate a theory combining the principles
of scalar–tensor gravity and Rastall’s proposal of a violation
of the usual conservation laws. We obtain a scalar–tensor
theory with two parameters ω and λ, the latter quantifying
the violation of the usual conservation laws (λ = 1 cor-
responding to the General Relativity limit). The only exact
spherically symmetric solution is that of Robinson–Bertotti
besides the Schwarzschild solution. A PPN analysis reveals
that General Relativity results are reproduced when λ = 0.
The cosmological case displays a possibility of decelera-
tion/acceleration or acceleration/deceleration transitions dur-
ing the matter dominated phase depending on the values of
the free parameters.

1 Introduction

The Brans–Dicke theory [1] appeared in the beginning of the
1960s as an important alternative to the theory of General
Relativity (GR). The main idea of this theory is to consider
the gravitational coupling G as a dynamical quantity, imple-
menting in this way the large number hypothesis formulated
by Dirac [2]. Hence, a dynamical field φ represents the grav-
itational coupling, and it is introduced in the gravitational
action through a kinetic term and a non-minimal coupling
with the usual Ricci scalar. A new parameter ω quantifies
the interaction of the scalar field and the gravitational term,
such that as ω → ∞ the General Relativity theory is recov-
ered. The observational estimations obtained indicate a very
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large value for ω, making the Brans–Dicke theory, in prac-
tice, very similar to GR. Recent estimates using the PLANCK
data point to a value ω ∼ 1,000 [3]. Local tests based on the
PPN approach may lead to higher values of ω [4].

In spite of those observational constraints, small—or even
negative—values of the parameter ω may be very interesting.
First of all, they sometimes arise in string theories in their
low-energy limit [5]. When negative values of ω are allowed,
primordial singularity-free solutions emerge naturally from
Brans–Dicke theory. Late time accelerated solution can be
achieved [6,7], but at the price of a negative gravitational
coupling. This last feature limits, of course, the attraction of
such scenarios.

We have recently been interested in some generaliza-
tions of GR that evoke the gravitational anomaly effect, viz.
Rastall’s theory [8,9]. These generalizations touch one of
the cornerstones of gravity theories: the conservation laws
encoded in the null divergence of the energy–momentum
tensor. Since the concept of energy in GR is an object of dis-
cussion [10,11], the possibility that the energy–momentum
tensor has a non-zero divergence should be considered in
some situations. For example, the chameleon mechanism
[12] uses this possibility by re-expressing a scalar–tensor
theory (like the Brans–Dicke one), originally formulated in
Jordan’s frame, in Einstein’s frame. Also, quantum effects in
a curved space–time may lead to a violation of the classical
conservation laws [13].

Rastall’s theory leads to many interesting results when
applied, for example, to the present universe [14]. In a way,
this theory can be viewed as a natural implementation of an
interaction model in the dark sector of the present stage of
the cosmic evolution. Alternatively, it can be considered as
a mechanism to generate effective equations of state when
ordinary fields are considered in a curved space–time [15].

Smalley [16] addressed the idea of violation of the con-
ventional conservation laws in the context of Brans–Dicke
theory. In this approach, the Klein–Gordon type equation for
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the scalar field was kept fixed while the Einstein equation
changed accordingly. Here, we would like to revisit this pro-
posal following a different path: we try to write down the
field equations in such a way that Brans–Dicke and GR as
well as the ordinary Rastall theory are recovered. The final
equations seem to be simpler than those of Ref. [16].

In this work we study this Brans–Dicke–Rastall (BDR)
theory. We investigate the resulting field equations in two
situations: spherically symmetrical and cosmological config-
urations. In the former case, we find that the only non-trivial
solution is represented by the Robinson–Bertotti metric (its
interpretation, however, differs from the conventional one). A
solution that represents a star-like configuration is the “triv-
ial” Schwarzschild one. A PPN analysis shows the possibility
of agreement with the usual tests of gravity theories. For some
cases, the General Relativity results are reproduced. At the
cosmological level, we show that accelerated solutions are
possible in the dust phase of the cosmic evolution without
introducing dark energy. We display examples where a decel-
erated/accelerated or accelerated/decelerated transitions are
achieved with a positive effective gravitational coupling.

This paper is organized as follows. In the next section, we
set up the field equations of the BDR theory. In Sect. 3 we
analyze static spherically symmetric solutions while Sect. 4
covers the PPN analysis. In Sect. 5 the cosmological context
is addressed. Finally, in Sect. 6 we summarize our conclu-
sions.

2 The theory

The main idea of Rastall’s theory [8,9] is the assumption that
in curved space–time the usual conservation laws used in GR
are violated. Hence, there must be a connection between the
divergence of the energy–momentum tensor and the curva-
ture of the space–time. According to this program, the diver-
gence of the energy–momentum tensor may be written as

T μν ;μ = 1 − λ

16πG
R,ν . (1)

In Eq. (1) λ is a free parameter codifying the deviation
from the conservation. When λ = 1 the traditional conserva-
tion laws are recovered. Equation (1) is a phenomenological
way to implement the gravitational anomaly due to quantum
effects (see [17], for example).

In the context of the Brans–Dicke theory, we can make
the identification

G = 1

φ
. (2)

Hence,

T μν ;μ = (1 − λ)φ

16π
R,ν . (3)

Let us generalize Rastall’s version of the field equations
to the Brans–Dicke case. Following the original formulation
in the context of GR, a minimal modification implies

Rμν − λ

2
gμν R = 8π

φ
Tμν + ω

φ2

{
φ;μφ;ν − 1

2
gμνφ;ρφ;ρ

}

+ 1

φ
(φ;μ;ν − gμν�φ). (4)

It is important to remark that even if the structure of the
right hand side is the same as in the Brans–Dicke theory, the
whole Eq. (4) can be derived from a Lagrangian only when
λ = 1.

The trace of these “Einsteinian equations” reads:

R = 1

1 − 2λ

{
8π

φ
T − ω

φ2 φ;ρφ;ρ − 3
�φ

φ

}
. (5)

With the aid of this expression Eq. (4) can be rewritten as

Rμν − 1

2
gμν R = 8π

φ

{
Tμν − 1 − λ

2(1 − 2λ)
gμνT

}

+ ω

φ2

{
φ;μφ;ν + λ

2(1 − 2λ)
gμνφ;ρφ;ρ

}

+ 1

φ

{
φ;μ;ν + (1 + λ)

2(1 − 2λ)
gμν�φ

}
. (6)

The Bianchi identities lead to

�φ = 8πλ

3λ − 2(1 − 2λ)ω
T − ω(1 − λ)

3λ − 2(1 − 2λ)ω

φ;ρφ;ρ
φ

.

(7)

The complete set of equations is

T μν ;μ = (1 − λ)φ

16π
R,ν , (8)

Rμν − 1

2
gμν R = 8π

φ

{
Tμν − 1 − λ

2(1 − 2λ)
gμνT

}

+ ω

φ2

{
φ;μφ;ν + λ

2(1 − 2λ)
gμνφ;ρφ;ρ

}

+ 1

φ

{
φ;μ;ν + (1 + λ)

2(1 − 2λ)
gμν�φ

}
, (9)

�φ = 8πλ

3λ − 2(1 − 2λ)ω
T − ω(1 − λ)

3λ − 2(1 − 2λ)ω

φ;ρφ;ρ
φ

.

(10)

When λ = 1, the usual Brans–Dicke theory is recovered.
Following the same steps as in the determination of the

effective gravitational coupling today in [4,18], we find the
following expression (see also Sect. 4):

G = 2[2λ + (3λ − 2)ω)]
3λ − 2(1 − 2λ)ω

1

φ
. (11)

When λ = 1 we obtain the corresponding expression for
the Brans–Dicke theory.
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3 Spherically symmetric static vacuum solutions

The classical tests of theory of gravity are based on the motion
of test particles in the geometry of a spherically symmetric
object like a star or a planet. Hence, to verify the viability
of the theory proposed, it is crucial to look for a spherically
symmetric solution. As a first step, the vacuum solution rep-
resenting the space–time in the exterior of a star-like object
is considered.

In the vacuum case, the equations reduce to

R,ν = 0, (12)

Rμν − 1

2
gμν R = ω

φ2

{
φ;μφ;ν + λ

2(1 − 2λ)
gμνφ;ρφ;ρ

}

+ 1

φ

{
φ;μ;ν + (1 + λ)

2(1 − 2λ)
gμν�φ

}
, (13)

�φ = − ω(1 − λ)

3λ − 2(1 − 2λ)ω

φ;ρφ;ρ
φ

. (14)

The first of these equations leads to

R = R0 = constant. (15)

Hence, in vacuum the Ricci scalar is necessarily constant.
The case R0 = 0 corresponds to the Schwarzschild solution
of GR.

3.1 Equations of motion

Let us consider a metric in the form

ds2 = e2γ dt2 − e2αdr2 − e2β(dθ2 + sin2 θdφ2). (16)

The functions α, β, and γ depend on the radial coordinate r
only. Under this assumption, the only non-zero components
of the Christoffel symbols are the following:

�0
0r = γ ′, �r

00 = e2(γ−α)γ ′, (17)

�r
rr = α′, �r

θθ = −e2(β−α)β ′, (18)

�r
φφ = −e2(β−α)β ′ sin2 θ, �θ

φφ = − sin θ cos θ, (19)

�θ
rθ = �

φ
rφ = β ′, �

φ
θφ = cot θ. (20)

The non-zero components of the Ricci tensor are 1

R0
0 = e−2α[γ ′′ + γ ′(γ ′ − α′ + 2β ′)], (21)

Rr
r = e−2α[γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2], (22)

Rθ
θ = Rφ

φ = e−2α[β ′′ + β ′(γ ′ − α′ + 2β ′)] − e−2β . (23)

With these expressions, we can determine the Ricci scalar:

1 We use the definitions: Rμν = ∂ρ�
ρ
μν −∂ν�

ρ
μρ +�

ρ
μν�

σ
ρσ −�

ρ
μσ �σ

ρμ,

R = gμν Rμν , and Gμ
ν = Rμ

ν − 1
2 δ

μ
ν R.

R = e−2α[2γ ′′ + 4β ′′ + 2γ ′(γ ′ − α′ + 2β ′)
+ 6β ′2 − 4β ′α′] − 2e−2β. (24)

Now, we can determine the components of the Einstein
tensor:

G0
0 = e−2α[−2β ′′ + 2α′β ′ − 3β ′2] + e−2β, (25)

Gr
r = −e−2α[2β ′γ ′ + β ′2] + e−2β, (26)

Gθ
θ = Gφ

φ = −e−2α[γ ′′ + β ′′ + β ′(γ ′ − α′ + β ′)
+γ ′(γ ′ − α′)]. (27)

Combining (5) with (14) we find

R0 = ω

{
3 + 2ω

3λ − 2(1 − 2λ)ω

}
φ;ρφ;ρ

φ2 . (28)

In this expression we have used explicitly R = R0 =
constant.

Now, the D’Alambertian reads

�φ =
(√−ggμνφ,ν

)
,μ√−g

= −e−2α[φ′′ + (γ ′ + 2β ′ − α′)φ′], (29)

where g ≡ det gμν .

3.2 Integrating the equations of motion

Let us choose the radial coordinate such that

α = γ + 2β. (30)

With this choice, the components of the Ricci tensor and
the D’Alambertian simplify to

R00 = e−4βγ ′′, (31)

Rrr = −γ ′′ − 2β ′′ + 4β ′γ ′ + 2β ′2, (32)

Rθθ = Rφφ/ sin2 θ = −e−2(γ+β)β ′′ + 1, (33)

�φ = −e−2αφ′′. (34)

Let us write the Einstein equations as

Rμν = ω

φ2

{
φ;μφ;ν + λ − 1

2(1 − 2λ)
gμνφ;ρφ;ρ

}

+ 1

φ

{
φ;μ;ν + λ − 2

2(1 − 2λ)
gμν�φ

}
(35)

123



3145 Page 4 of 10 Eur. Phys. J. C (2014) 74:3145

or, in the extended form

γ ′′ + φ′

φ
γ ′ = −ω

(λ − 1)

2(1 − 2λ)

(
φ′

φ

)2

− λ − 2

2(1 − 2λ)

φ′′

φ
,

(36)

γ ′′ + 2β ′′ − 2β ′(β ′ + 2γ ′) − φ′

φ
(γ ′ + 2β ′)

= −ω
1 − 3λ

2(1 − 2λ)

(
φ′

φ

)2

+ 3λ

2(1 − 2λ)

φ′′

φ
, (37)

β ′′ + β ′ φ′

φ
− e2(γ+β) = −ω

λ − 1

2(1 − 2λ)

(
φ′

φ

)2

− λ − 2

2(1 − 2λ)

φ′′

φ
. (38)

Equations (14) and (28) lead to two supplementary equa-
tions:

R0 = −ω

{
3 + 2ω

3λ − 2(1 − 2λ)ω

}
e−2α

(
φ′

φ

)2

, (39)

φ′′ = −ω
1 − λ

3λ − 2(1 − 2λ)ω

φ′2

φ
. (40)

Their solution is

φ = φ0(r/r0)
1

1−A , (41)

α = − ln (r/r0) − ln

[
(1 − A)

√
R0(1 − λ)

(3 + 2ω)A

]
, (42)

with φ0 and r0 being integration constants. 2 We have also
defined

A = −ω
1 − λ

3λ − 2(1 − 2λ)ω
. (43)

Using the solution (41) in Eq. (36), we find for γ the
following expression:

γ = γ0 + γ1(r/r0)
− A

1−A + γ2 ln (r/r0), (44)

where γ0 and γ1 are arbitrary constants and

γ2 = − 1

2(1 − 2λ)

{
ω(λ − 1) + (λ − 2)A

A(1 − A)

}
. (45)

2 Note that we have chosen r = 0 as a reference point. Depending on
the sign of (1 − A) it corresponds either to φ = 0 (infinitely strong
gravity) or φ = ∞ (no gravity).

Now, using β = 1
2 (α − γ ), we obtain

β = −1

2

{
ln (r/r0) + ln

[
(1 − A)

√
R0(1 − λ)

(3 + 2ω)A

]
+ γ0

+γ1(r/r0)
− A

1−A − γ2 ln (r/r0)

}
,

= −1

2

{
ln

[
(1 − A)

√
R0(1 − λ)

(3 + 2ω)A

]
+ γ0 + γ1r

−A
1−A

+(γ2 + 1) ln (r/r0)

}
,

= 1

2

{
α0−γ0−γ1(r/r0)

− A
1−A −(γ2+1) ln (r/r0)

}
, (46)

where

α0 = − ln

[
(1 − A)

√
R0(1 − λ)

(3 + 2ω)A

]
, (47)

is a constant.
Substituting the results in Eq. (38), we see that it is satisfied

for any r only if γ1 = 0 and γ2 = −1. This implies that the
metric function β is, in fact, constant. For the other metric
functions the relations above yield

α = α0 − ln (r/r0), (48)

γ = γ0 − ln (r/r0), (49)

β = β0 = 1

2
(α0 − γ0). (50)

Hence, the metric is

ds2 = e2α0
dt2

(r/r0)2 − e2γ0
dr2

(r/r0)2 − eα0−γ0 d�2. (51)

If the scale r0 is chosen such that r2
0 = eα0−3γ0 , making

redefinitions t → e−(γ0+α0)/2, s → e−(γ0−α0)/2, and r →
rr0, we arrive at

ds2 = 1

r2 (dt2 − dr2 − r2d�2), (52)

which is the so-called Robinson–Bertotti solution [19,20]
that is obtained, in the context of GR, by considering an
electromagnetic field. Hence, no black hole solution is pos-
sible. This solution appears as the only non-trivial (non-
Schwarzschild solution) vacuum solution.

Interestingly, if one leaves the scale parameter r0 free,
this results in a factor in front of d�2 in (52) that cannot
be removed by further redefinitions. This in turn implies a
deficit of the solid angle. Consequently, the general solu-
tion (48) describes a more general Bertotti–Robinson-like
solution with a 3-cone.

Now we have to verify that the solution is realized for at
list for a pair of real ω and λ. Setting, just as a first example,
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γ2 = −1 and λ = 2 and using (37), (43), and (45), we find
that ω is a solution of the following equation:

47ω2 − 18ω − 72 = 0, (53)

which admits real roots. In particular, the root ω = 1.444 is
plausible, because it leads to A = 0.098 implying α0 real
if R0 is negative. On the other hand, if we set λ = 0 we
find ω = −3/2. It is straightforward to check that these two
values for λ and ω can also provide α0 real if R0 is negative.
It is important to emphasize that the choice of λ = 0 is
more motivated as will be more clearly shown in Sect. 4. The
reason behind this choice is that for this specific value the
PPN parameters of the Brans–Dicke–Rastall gravity coincide
with those arising from GR, regardless of the value of ω.
Therefore, this particular value ensures the fulfillment of the
local tests.

Finally, for completeness we recall the structure of
the Robinson–Bertotti solution rediscovered also by Love-
lock [21,22]. This space–time is a direct product [23] of con-
stant curvature spaces Ad S2 × S2. It possesses two apparent
singularities r = 0 and r = +∞. The former is associated to
the origin of the coordinates and is likely unphysical, because
curvature invariants stay finite there (this issue will be studied
elsewhere), and the latter corresponds to a null hypersurface.
Indeed, by the transformation

r(η, χ) = 1

sin (χ − η)
,

t (η, χ) = χ + cot (χ − η) (54)

the metric is reduced to the form

ds2 = dη2 − cos2 (η − χ)dχ2 − d�2. (55)

The “singularity” r = +∞ corresponds to (χ − η) → +0,
θ = const, ϕ = const. One can easily see that this hypersur-
face is null and regular (“horizon”).

4 The PPN parameters

The fact that the only static, spherically symmetric exact solu-
tions that can represent a star is the Schwarzschild one does
not imply that necessarily the classical tests of gravitational
phenomena are automatically recovered. Instead, we must
analyze the parametrized post-newtonian approach. In this
section, we will follow very closely the approach given in
Ref. [18] for the Brans–Dicke theory.

To analyze the PPN parameters it is more convenient to
write the equations as

Rμν = 8π

φ

{
Tμν + λk2

2(1 − 2λ)
gμνT

}

+ ω

φ2

{
φ;μφν + (λ − 1)

2(1 − 2λ)
k2gμνφ;ρφ;ρ

}
+ φ;μ;ν

φ
, (56)

�φ = 1

k1

{
8πλT − ω(1 − λ)

φ;ρφ;ρ

φ

}
, (57)

where

k1 = 3λ − 2(1 − 2λ)ω, k2 = 1 + λ − 2

k1
. (58)

When λ = 1, we come back to the usual Brans–Dicke
equations,

Rμν = 8π

φ

{
Tμν + 1 + ω

3 + 2ω
gμνT

}
+ ω

φ2 φ;μφν + φ;μ;ν
φ

,

(59)

�φ = 8π

3 + 2ω
T, (60)

with

k1 = 3 + 2ω, k2 = 2
(1 + ω)

3 + 2ω
. (61)

We consider the following expansion for the metric using
an expansion in the slow-motion, weak-field approxima-
tion [24]:

g00 = 1 + 2
g00 + 4

g00 + · · · (62)

g0i = 3
g0i + · · · (63)

gi j = −δi j + 2
gi j + · · · (64)

For the Ricci tensor, the expansion takes the form

R00 = 2
R00 + 4

R00 + · · · (65)

R0i = 3
R0i + · · · (66)

Ri j = 2
Ri j + · · · (67)

while for the energy–momentum tensor, we have

T 00 =
0

T 00 +
2

T 00 + . . . , T00 =
0

T 00 +
2

T 00 +2
2
g00

0

T 00 . . .

(68)

T 0i = 1
T0i + . . . , T0i = − 1

T0i + · · · (69)

T i j =
2

T i j + . . . , Ti j =
2

T i j + · · · (70)

T =
0

T 00 +
2

T 00 + 2
g00

0

T 00 −
2

T kk + · · · (71)

For the scalar field, we write,

φ = φ0(1 + ξ) ≡ 1

G0
(1 + ξ), (72)

with

ξ = 2
ξ + 4

ξ + · · · (73)
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The expansion in the Einstein equation reads

2
R00 = 8πG0

{
1 + λk2

2(1 − 2λ)

} 0

T 00, (74)

4
R00 = 8πG0

{[
1 + λk2

2(1 − 2λ)

] 2

T 00

+2

[
1 + λk2

2(1 − 2λ)

]
2
g00

0

T 00

− 2
ξ

(
1 + λk2

2(1 − 2λ)

) 0

T 00 − λk2

2(1 − 2λ)

2

T kk

}

−ω
(λ − 1)k2

2(1 − 2λ)

2
ξ,k

2
ξ,k + 2

ξ,0,0 −
2

�k
00

2
ξ,k, (75)

3
R0i = −8πG0

1

T 0i + 2
ξ,0,i , (76)

2
Ri j = −8πG0

λk2

2(1 − 2λ)
δi j

0

T 00 + 2
ξ,i, j , (77)

∇2
2
ξ = −8πλG0

k1

0

T 00 . (78)

The expansion of the Ricci tensor up to second order, using
the harmonic coordinate condition, gives

2
R00 = −1

2
∇2 2

g00, (79)

4
R00 = −1

2

{
∇2 4

g00 − ∂2
t

2
g00 − 2

gi j∂
2
i j

2
g00 + ∂k

2
g00∂k

2
g00

}
,

(80)
3
R0i = −1

2
∇2 3

g0i , (81)

2
Ri j = −1

2
∇2 2

gi j . (82)

Hence, the PPN equations are

∇2 2
g00 = −16πG0

{
1 + λk2

2(1 − 2λ)

} 0

T 00, (83)

∇2 4
g00 − ∂2

t

2
g00 − 2

gi j∂
2
i j

2
g00 + ∂k

2
g00∂k

2
g00

= −16πG0

{[
1 + λk2

2(1 − 2λ)

] 2

T 00

+2

[
1 + λk2

2(1 − 2λ)

]
2
g00

0

T 00

− 2
ξ

(
1 + λk2

2(1 − 2λ)

) 0

T 00 − λk2

2(1 − 2λ)

2

T kk

}

+2ω
(λ − 1)k2

2(1 − 2λ)

2
ξ,k

2
ξ,k −2

2
ξ,0,0 +∂k

2
g00

2
ξ,k, (84)

∇2 3
g0i = 16πG0

1

T 0i −2
2

ξ,0,i , (85)

∇2 2
gi j = 16πG0

λk2

2(1 − 2λ)
δi j

0

T 00 −2
2

ξ,i, j , (86)

∇2
2
ξ = −8πλG0

k1

0

T 00 . (87)

The Brans–Dicke limit (λ = 1) gives

∇2 2
g00 = 16πG0

{
2 + ω

3 + 2ω

} 0

T 00, (88)

∇2 4
g00 − ∂2

t

2
g00 − 2

gi j∂
2
i j

2
g00 + ∂k

2
g00∂k

2
g00

= 16πG0

{[
2 + ω

3 + 2ω

] 2

T 00 +2

[
2 + ω

3 + 2ω

]
2
g00

0

T 00

− 2
ξ

(
2 + ω

3 + 2ω

) 0

T 00 + (1 + ω)

3 + 2ω

2

T kk

}

+2
2

ξ,0,0 −∂k
2

g00
2

ξ,k, (89)

∇2 3
g0i = −16πG0

1

T 0i +2
2

ξ,0,i , (90)

∇2 3
gi j = 16πG0

1 + ω

3 + 2ω
δi j

0

T 00 +2
2

ξ,i, j , (91)

∇2
2
ξ = − 8πG0

3 + 2ω

0

T 00 . (92)

In order to reproduce the Poisson equation,

∇2� = 4πG
0

T 00, (93)

we write in Eq. (83),
2
g00 = −2�, obtaining as for the grav-

itational coupling,

G = 2

{
1 + λk2

2(1 − 2λ)

}
G0, (94)

which reduces to expression (11) in the general case, and to
the usual Brans–Dicke relation

G = 4 + 2ω

3 + 2ω
G0, (95)

when λ = 1.
The consistency of the previous result with (92) implies

2
ξ = −

{
1 + λk2

2(1 − 2λ)

}−1
λ

k1
�. (96)

Equation (91) may be written as

∇2

{
2
gi j −2

[
1 + λk2

2(1 − 2λ)

]−1
λk2

2(1 − 2λ)
δi j�

}

= 2

[
1 + λk2

2(1 − 2λ)

]−1
λ

k1
�,i, j . (97)
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Using � = − G M
r and following [18], the solution reads,

2
gi j = − λ

k1A
{

1 + k2k1

1 − 2λ

}
G M

r
δi j + λ

k1A
{ xi x j

r3 G M

+2G M R2
(
δi j − 3

xi x j

r2

) 1

r3

}
, (98)

with the definitions,

G M R2 =
∫ ∞

0

[
� + G M

r

]
r2dr, A = 1 + λk2

2(1 − 2λ)
.

(99)

To determine
4
g00, we use Eq. (89) in the vacuum, static

case:

∇2 4
g00 − 2

gi j∂i∂ j
2
g00 + ∂k

2
g00∂k

2
g00

= ω
λ − 1

1 − 2λ
∂k

2
ξ ∂k

2
ξ +∂k

2
g00

2
ξ,k . (100)

The solution is

4
g00 = − B

2

G2 M2

r2 − 2λ

Ak1

G2 M2 R2

r4 + c1

R

G2 M2

r
, (101)

where c1 is a new constant and

B = 4 − 2λ

k1A − ω(λ − 1)
λ2k2

(1 − 2λ)(k1A)2 . (102)

Using the redefinitions described in [18], we find finally

2
g00 = 2

G M

r
, (103)

4
g00 = − B

2

G2 M2

r2 = −(γ − 1 + 2β)
G2 M2

r2 , (104)

2
gi j = − λ

k1A
{

1 + k2k1

1 − 2λ

}
G M

r
δi j + λ

k1A
xi x j

r3 G M

= (3γ − 1)
G M

r
δi j + (1 − γ )

xi x j

r3 G M. (105)

The PPN parameters read

γ = 1 − λ

k1A , (106)

β = 1

2

{
B

2
+ λ

k1A
}

= 1 − ω
λ2(λ − 1)k2

4(1 − 2λ)(k1A)2 . (107)

The values γ = 1 and β = 1 (General Relativity results)
are possible if λ = 0. Even for λ 	= 0 the values of γ and
β can be very near those allowed by the observational con-
straints for a region in the λ and ω parameter space. Remark
that, for λ = 1, the Brans–Dicke results,

γ = 1 + ω

2 + ω
, β = 1, (108)

are recovered.

Since the experimental tests give values for γ and β near
1 with a precision up to 10−5 [24], we can consider that we
must have λ = 0. However, a numerical inspection shows
that values for the PPN parameters inside those constraints
can be obtained in other regions of the parameter space of λ

and ω. These regions include the usual Brans–Dicke case for
which ω >> 1.

5 Cosmology

Let us consider an isotropic and homogeneous space–
time described by the flat Friedmann–Lemaître–Robertson–
Walker (FLRW) metric,

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). (109)

In this case the equations of motion read

ρ̇ + 3
ȧ

a
(1 + w)ρ = −3(1 − λ)

8π
φ

[ ...
a

a
+ ȧ

a

ä

a
− 2

(
ȧ

a

)3
]

,

(110)

3

(
ȧ

a

)2

= 8πρ

φ

{
1 − 3λ

2(1 − 2λ)
+ 3(1 − λ)

2(1 − 2λ)
w

}

+ω

[
2 − 3λ

2(1 − 2λ)

](
φ̇

φ

)2

+
[

3(1 − λ)

2(1 − 2λ)

φ̈

φ
+ 3(1 + λ)

2(1 − 2λ)

ȧ

a

φ̇

φ

]
, (111)

2
ä

a
+

(
ȧ

a

)2

= −8π

φ

{
1 − λ − (1 + λ)w

2(1 − 2λ)

}
ρ

+ω
λ

2(1 − 2λ)

(
φ̇

φ

)2

+ 1 + λ

2(1 − 2λ)

φ̈

φ

+ 5 − λ

2(1 − 2λ)

ȧ

a

φ̇

φ
, (112)

φ̈

φ
+ 3

ȧ

a

φ̇

φ
= 8πλ

3λ − 2(1 − 2λ)ω
(1 − 3w)

ρ

φ

−ω
1 − λ

3λ − 2(1 − 2λ)ω

(
φ̇

φ

)2

. (113)

Equations (110)–(113) form a rich and complex system. In
order to get a hint on which kind of solutions they predict, we
consider power-law solutions, in the first place. The power-
law solutions constitute a very restrictive case, but they can
indicate the kind of cosmological solution we can expect
from the BDR theory. Hence, suppose the solutions have the
form

a = a0t s, φ = φ0t p, ρ = ρ0tq , (114)

where a0, φ0, ρ0, s, p, and q are constants.
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Fig. 1 The left panel represents the first root for s displaying accelera-
tion of the scale factor, the red line separating positive (left) and negative
(right) values. The center left panel represents the first root for p, the
red line separating positive (second and fourth quadrants) and negative

values (first and third quadrants). In the center right and right panels,
the value of s (right), and p (center) as a function of λ for ω = −30
are displayed

Plugging (114) into (110)–(112), we obtain the following
relations:

ρ0

φ0
[q + 3s(1 + w)] = 3(λ − 1)

4π
s(1 − 2s), (115)

3s2 = 8πρ0

φ0

[
1 − 3λ + 3(1 − λ)w

2(1 − 2λ)

]

+ ω
2−3λ

2(1−2λ)
p2+3

(1−λ)p(p−1) + (1 + λ)sp

2(1 − 2λ)
,

(116)

p[p − 1 + 3s] = 8πλ

3λ − 2(1 − 2λ)ω

ρ0

φ0
(1 − 3w)

− ω
1 − λ

3λ − 2(1 − 2λ)ω
p2. (117)

The condition to have consistent power-law solutions is q =
p − 2. Using this relation and combining Eqs. (115)–(117),
we obtain two coupled polynomials for s and p:

6s2(1 − 2λ)[p − 2 + 3s(1 + w)]
= 6(λ − 1)s(1 − 2s)[1 − 3λ + 3(1 − λ)w]

+{ωp2(2 − 3λ) + 3p[(1 − λ)(p − 1) + (1 + λ)s]}
×[p − 2 + 3s(1 + w)], (118)

6[(λ − 1)s(1 − 2s)](1 − 3w)λ

= {[p(p − 1) + 3sp][3λ − 2(1 − 2λ)ω]
+ω(1 − λ)p2}[p − 2 + 3s(1 + w)]. (119)

This system admits eight pairs of roots for (s, p). For the dust
case, w = 0, one of the pairs corresponds to the Minkowski
case, p = s = 0. Another one is s = p = 1/2. A third root
implies a curious configuration with s = 0 and p = 2, that
is, a static universe, with a varying gravitational coupling.
Among the other five pairs, two incorporate an accelerated
regime of the expansion (Fig. 1), while the remaining three
describe a decelerating universe .

The set of Eqs. (110)–(113) may be recast into the form
of a dynamical system:

Ḣ = 1

2k3

{
−6(1 − 2λ)(1 + w)H2 + [2 + (1 − w)ω] f 2

+2 ḟ + 2(2 + 3w)H f
}

, (120)

ḟ = 1

k1k3 + 3λ(1 − 3w)(1 − λ)

{
6λ(1 − 3w)(1 − 2λ)H2

− [ω[λ(1 − 3w)(2 − 3λ) + (1 − λ)k3] + k1k3

+3λ(1 − 3w)(1 − λ)] f 2

−3[k1k3 + 3(1 + λ)λ(1 − 3w)]H f } , (121)

where

k3 = 1 − 3λ + 3(1 − λ)w. (122)

This dynamical system is very complex, and depends not
only on the values of λ and ω, but also on the value of the
initial conditions for H and f . We look for an example of a
deceleration/acceleration transition during the matter domi-
nated phase (w = 0). Figure 2 displays as an example the
behavior of the Hubble function and deceleration parameter
q = −1− Ḣ

H2 for ω = 1 and λ = −1, undergoing this transi-
tion. Note that the effective G > 0 stays positive (see (11)).

Consequently, in the framework of the BDR theory there
are solutions that have a positive gravitational coupling and
display a deceleration/acceleration transition in a matter
dominated universe, thus, circumventing the restriction exist-
ing in the pure Brans–Dicke theory [6].

However, as was shown in the preceding section, the local
tests are satisfied in the present theory at least for two cases:
λ = 0, leading to the PPN parameters identical to the GR
ones; for nonvanishing λ and ω very big. For the specific
case λ = 0 and a matter dominate universe, the dynamical
system reduces to
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Fig. 2 Behavior of the Hubble function H and deceleration parameter q for ω = 1, λ = −1 and w = 0
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Fig. 3 Solutions in the (H, φ̇/φ) ≡ (H, u) phase space for λ = 0 and
ω = −1.2. The vertical axis corresponds to H and the horizontal one
to u. The origin corresponds to Minkowski space–time. The red lines
delimite the region where the expansion of the universe is accelerated

Ḣ = −3H2 +
(

ω + 1

2

)
u2 − u H, (123)

u̇ = −3Hu − 1

2
u2, (124)

with the definition u = φ̇/φ. The gravitational coupling is
always positive in this case. There are power-law acceler-
ated solutions for − 7

6 > ω > − 5
4 . Even if our goal here

is not to perform a complete dynamical system analysis, we
display the trajectories of the solutions in the (H, u) phase
space for the system (123,124) in Fig. 3, where it is shown

the region where the accelerated solutions occur indicate
by the red lines. The origin corresponds to the Minkowski
space–time. It can be seen that the accelerate/decelerate tran-
sition occurs, the universe reaching the decelerate phase in
the future. Hence, the transition occurs in the opposite sense
with respect to the previous example. This case seems more
appropriate to describe a primordial phase.

For the radiation phase, the ordinary solutions of the
standard model are also present here, since for this case
T = gμνTμν = 0. This is important in order not to spoil
the success of the standard cosmological model, mainly in
what concerns the primordial nucleosynthesis.

6 Conclusions

In this work we have combined the idea of a scalar–tensor
theory of the Brans–Dicke type and Rastall’s proposal of a
gravitational anomaly encoded in the violation of the con-
ventional conservation law for the energy–momentum ten-
sor. In doing so, we end up with two free parameters: the
usual Brans–Dicke parameter ω and Rastall parameter λ,
representing a degree of the non-conservation. The resulting
theory referred to as the BDR (Brans–Dicke–Rastall) theory
cannot be derived from an action principle, at least in the
Riemannian context, as usually happens for the Rastall-type
theory, and as we can expect from a theory that tries to classi-
cally incorporate effects typical of the quantum regime. But
there are claims that an action principle can be recovered
using a more general geometrical framework—for example,
the Weyl geometry [25,26].

We have investigated the BDR theory in two contexts:
spherically symmetric static solutions and cosmological
regime. In the first case, we found that the only possible
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non-trivial analytical solution is a Robinson–Bertotti type
solution, which represents a kind of stretched star. In the
General Relativity context such a solution emerges from a
configuration including electromagnetic field while in the
BDR theory it is a vacuum solution. The only possible solu-
tion in the BDR theory that can represent a star is the usual
Schwarzschild solution corresponding to the trivial configu-
ration where the scalar field is constant. Based on this result
we can argue that the usual classical tests of General Rel-
ativity are equally satisfied in the BDR theory without any
important restriction on the parameters ω and λ. The case
λ = 0 looks like a scalar–tensor generalization of the case
studied in [27], which is a particular case of the usual Rastall
theory, with very particular and interesting properties.

For the cosmological case, we found power-law solutions
for the matter dominated phase, some of them representing an
accelerating expansion, others, decelerating. This fact sug-
gests that perhaps a decelerating/accelerating transition can
be achieved in the matter dominated phase in the BDR theory.
In fact, we find some particular solutions where this transi-
tion occurs, in one sense or in another, leading to possible
models for the present or the primordial universe. But the
results in general are not only very sensitive to the parame-
ters ω and λ, but also to the initial conditions. In this sense, a
more detailed dynamical analysis must be performed, which
we hope to present in the future.
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