572 research outputs found
ΠΡΡΠΎΠΊΠ°Ρ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½ Π΄Π»Ρ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π°: ΠΏΠ»ΡΡΡ ΠΈ ΠΌΠΈΠ½ΡΡΡ
Up-to-date technologies have led to significant improvement of haemodialysis membranes biocompatibility and permeability. The new classes of membranes, high cut-off and middle cut-off, allow enhanced removal of middle molecules such as Ξ²2-microglobulin and even larger molecules. High membrane permeability along with the wide use of convective modalities are accompanied by increased albumin loss during dialysis. What is the acceptable upper limit for this loss and where is the right balance between the benefit of enhanced uremic substances removal and potential adverse effects of albumin deprivation are the active areas of research.Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΌΠ΅ΠΌΠ±ΡΠ°Π½ Π΄Π»Ρ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΈΡ
Π±ΠΈΠΎΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΠΎΡΡΡ ΠΈ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ. ΠΠΎΠ²ΡΠ΅ ΡΠ°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½ β Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ Π²Π΅ΡΠ΅ΡΡΠ² β ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ΄Π°Π»ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠ΅Π΄Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Ξ²2 -ΠΌΠΈΠΊΡΠΎΠ³Π»ΠΎΠ±ΡΠ»ΠΈΠ½, Π½ΠΎ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ. ΠΡΡΠΎΠΊΠ°Ρ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Π΄ΠΈΠ°Π»ΠΈΠ·Π½ΡΡ
ΠΌΠ΅ΠΌΠ±ΡΠ°Π½ ΠΈ ΡΠΈΡΠΎΠΊΠΎΠ΅ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠΎΠΏΡΡΠΆΠ΅Π½Ρ Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΡΠ΅ΡΠ΅ΠΉ Π°Π»ΡΠ±ΡΠΌΠΈΠ½Π° Π² Ρ
ΠΎΠ΄Π΅ ΡΠ΅Π°Π½ΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΊΠΎΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠ°ΠΊΠΈΡ
ΠΏΠΎΡΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΠΏΡΠΈΠ΅ΠΌΠ»Π΅ΠΌΡΠΌ ΠΈ Π³Π΄Π΅ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ° ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°ΠΌΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡΡ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΠΈΠ²Π°Π½ΠΈΡ Π°Π»ΡΠ±ΡΠΌΠΈΠ½Π° β ΡΡΠΈ Π²ΠΎΠΏΡΠΎΡΡ ΡΡΠ΅Π±ΡΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΠΏΡΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ
Objective: to evaluate the dependence of the magnitude of convection flow in online hemodiafiltration (OLHDF) on ultrafiltration control method and patientsβ individual characteristics. Materials and methods. The study included 36 stable dialysis patients (20 male and 16 female). The substitution rate was conducted manually based on transmembrane pressure (TMP). In some cases, devices with automatic filtration rate control unit AutoSub plus were used. The filtration rate (FR), TMP, blood flow rate (Qb), specific filtration rate (SFR, m/l/min/mm Hgβ1 ) were recorded. Results. The maximum SFR in various patients ranged from 0.51 to 0.80 ml/min/mm Hgβ1 ; average value was 0.62 Β± 0.07 ml/min/mm Hgβ1 . There was significant correlation of SFR with hemoglobin level (r = β0.55). SFR reduced during hemodiafiltration (on average β by 23 Β± 4%). SFR was significantly affected by Qb (r = 0.70). Maximum SFR was achieved with a TMP of 140β220 mm Hg; with TMP over 250 mm Hg, a decrease in SFR was noted, an increase in Qb was required for further increase in FR. Individual stability of SFR was noted during serial observations; fluctuations in a particular patient did not exceed 10%. Substitution volume for the HDF session was 18.0 Β± 3.3 L, the FR/Qb ratio was 24.7 Β± 5.2%. Substitution volume of 21 L was not achieved in 17 of 36 patients. The use of automatic FR adjustment system made it possible to increase the substitution volume (SV) by 12β18%. Conclusion. Achieving maximum convection volume in OLHDF requires individualizing treatment parameters. The use of FR automatic control allows maximum possible convection flow.Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΠΏΡΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (ΠΎΠ»ΠΠΠ€) ΠΎΡ ΡΠΏΠΎΡΠΎΠ±Π° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ»ΡΡΡΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠ΅ΠΉ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΡΠ»ΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ 36 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (20 ΠΌΡΠΆΡΠΈΠ½ ΠΈ 16 ΠΆΠ΅Π½ΡΠΈΠ½), Π½Π°Ρ
ΠΎΠ΄ΡΡΠΈΡ
ΡΡ Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·ΠΎΠΌ. Π£ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΡΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π² ΡΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ (Π’ΠΠ). Π ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΡ Ρ Π±Π»ΠΎΠΊΠΎΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (Π‘Π€) AutoSub plus. Π€ΠΈΠΊΡΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Π‘Π€, Π’ΠΠ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° (Π‘Π), ΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (Π£Π‘Π€, ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 ). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π£Π‘Π€ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π»Π°ΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
0,51β0,80 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 , ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 0,62 Β± 0,07 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 . ΠΡΠ»Π° ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° Π·Π½Π°ΡΠΈΠΌΠ°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ Π£Π‘Π€ Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° (r = β0,55). Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΎΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π£Π‘Π€ (Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ β Π½Π° 23 Β± 4%). ΠΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π£Π‘Π€ ΠΎΠΊΠ°Π·ΡΠ²Π°Π»Π° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π‘Π (r = 0,70). ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π£Π‘Π€ Π΄ΠΎΡΡΠΈΠ³Π°Π»Π°ΡΡ ΠΏΡΠΈ Π’ΠΠ 140β220 ΠΌΠΌ ΡΡ. ΡΡ., ΠΏΡΠΈ Π’ΠΠ ΡΠ²ΡΡΠ΅ 250 ΠΌΠΌ ΡΡ. ΡΡ. ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΎΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π£Π‘Π€, ΠΈ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΏΡΠΈΡΠΎΡΡΠ° Π‘Π€ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ°. ΠΡΠΈ ΡΠ΅ΡΠΈΠΉΠ½ΡΡ
Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡΡ
Π±ΡΠ»Π° ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Π£Π‘Π€, ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΈ 10%. ΠΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° ΡΠ΅Π°Π½Ρ ΠΠΠ€ ΡΠΎΡΡΠ°Π²ΠΈΠ» 18,0 Β± 3,3 Π», ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π‘Π€/Π‘Π 24,7 Β± 5,2%, ΠΏΡΠΈ ΡΡΠΎΠΌ Ρ 17 ΠΈΠ· 36 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π½Π΅ Π±ΡΠ» Π΄ΠΎΡΡΠΈΠ³Π½ΡΡ ΠΎΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ 21 Π». ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ Π‘Π€ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΠΎΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ (ΠΠ) Π½Π° 12β18%. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΏΡΠΈ ΠΎΠ»ΠΠΠ€ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π‘Π€ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠΎΡΠΎΠΊ
Π‘Π΅ΠΌΠ΅ΠΉΠ½Π°Ρ Π°ΠΌΠΈΠ»ΠΎΠΈΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΈΠ½Π΅ΠΉΡΠΎΠΏΠ°ΡΠΈΡ TTR Cys 114 Ρ ΠΌΠΎΠ½ΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΡΡ Π±ΡΠ°ΡΡΠ΅Π²-Π±Π»ΠΈΠ·Π½Π΅ΡΠΎΠ² (ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ)
Transthyretin amyloidosis (ATTR) is a hereditary autosomal dominant disease. Its symptoms depend on polymorphisms of the transthyretinΒ gene and include disorders of the peripheral nervous system and internal organs. One of the rarest mutations of the transthyretinΒ gene is tyrosine substitution for cysteine in position 114 (Tyr114Cys). One of the described characteristics of ATTR is the discordantΒ phenotype in monozygotic twins. We present a case of ATTR Cys 114 in a Russian family with a pair of monozygotic twinsΒ discordant for ATTR.Π’ΡΠ°Π½ΡΡΠΈΡΠ΅ΡΠΈΠ½ΠΎΠ²ΡΠΉ Π°ΠΌΠΈΠ»ΠΎΠΈΠ΄ΠΎΠ· (transthyretin amyloidosis, ATTR) β Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π°ΡΡΠΎΡΠΎΠΌΠ½ΠΎ-Π΄ΠΎΠΌΠΈΠ½Π°Π½ΡΠ½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΈΡΠΎΡΠΌΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° ΡΡΠ°Π½ΡΡΠΈΡΠ΅ΡΠΈΠ½Π° ΠΈ Π²ΠΊΠ»ΡΡΠ°ΡΡ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΎΡΠ³Π°Π½ΠΎΠ². Π Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΅Π΄ΠΊΠΈΠΌ ΠΌΡΡΠ°ΡΠΈΡΠΌ Π³Π΅Π½Π° ΡΡΠ°Π½ΡΡΠΈΡΠ΅ΡΠΈΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π·Π°ΠΌΠ΅Π½Π° ΡΠΈΡΡΠ΅ΠΈΠ½Π° Π½Π° ΡΠΈΡΠΎΠ·ΠΈΠ½ Π² ΠΏΠΎΠ·ΠΈΡΠΈΠΈ 114Β (Tyr114Cys). ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΠΏΠΈΡΠ°Π½Π½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΡ ATTR ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΡΠΊΠΎΡΠ΄Π°Π½ΡΠ½ΠΎΡΡΡ ΡΠΈΠΌΠΏΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ Ρ ΠΌΠΎΠ½ΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΡΡ
Π±Π»ΠΈΠ·Π½Π΅ΡΠΎΠ². ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΡΠ»ΡΡΠ°ΠΉ ATTR Cys 114 Π² ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠ΅ΠΌΡΠ΅ Ρ ΠΌΠΎΠ½ΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΡΡ
Π±ΡΠ°ΡΡΠ΅Π²-Π±Π»ΠΈΠ·Π½Π΅ΡΠΎΠ², Π΄ΠΈΡΠΊΠΎΡΠ΄Π°Π½ΡΠ½ΡΡ
ΠΏΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡΒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Π Π°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΠΎΡΡΡ ΠΈ ΡΠ°ΠΊΡΠΎΡΡ ΡΠΈΡΠΊΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ Π΄ΠΈΠ°Π±Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΠΈΠ½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ Ρ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ ΡΠ°Ρ Π°ΡΠ½ΡΠΌ Π΄ΠΈΠ°Π±Π΅ΡΠΎΠΌ 1-Π³ΠΎ ΡΠΈΠΏΠ°
The NISLL scale and 7 electrophysiological tests were used to diagnose distal symmetric sensorimotor polyneuropathy in 120 inpatientsΒ with type 1 diabetes mellitus. The high rate (68.3%) of symptomatic or subclinical polyneuropathy was found. The duration of metabolicΒ disturbances rather than short-term fluctuations in glycemia in terms of HbA1c levels was shown to mainly affect the degree of polyneuropathyΒ in the patients of this group. The additional risk factors of polyneuropathy were retinopathy, smoking or hyperlipidemia.Π£ Π»Π΅ΡΠΈΠ²ΡΠΈΡ
ΡΡ Π² ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ΅ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠ°Ρ
Π°ΡΠ½ΡΠΌ Π΄ΠΈΠ°Π±Π΅ΡΠΎΠΌ 1-Π³ΠΎ ΡΠΈΠΏΠ° (n = 120) ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° Π΄ΠΈΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΠΉΒ ΡΠ΅Π½ΡΠΎΡΠ½ΠΎ-ΠΌΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠ½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΊΠ°Π»Ρ NISLL ΠΈ 7 ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΡΠΎΠ². ΠΡΡΠ²Π»Π΅Π½Π° Π²ΡΡΠΎΠΊΠ°ΡΒ ΡΠ°ΡΡΠΎΡΠ° ΡΠΈΠΌΠΏΡΠΎΠΌΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΡΠ±ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΠΈΠ½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ (68,3 %). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΠΈΠ½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π½ΠΎ Π½Π΅ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π³Π»ΠΈΠΊΠ΅ΠΌΠΈΠΈΒ ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ HbA1c. ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠΈΡΠΊΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠΎΠ»ΠΈΠ½Π΅Π²ΡΠΎΠΏΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ»ΠΈΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ΅ΡΠΈΠ½ΠΎΠΏΠ°ΡΠΈΠΈ, ΠΊΡΡΠ΅Π½ΠΈΠ΅ΠΈ Π³ΠΈΠΏΠ΅ΡΠ»ΠΈΠΏΠΈΠ΄Π΅ΠΌΠΈΡ
ΠΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ, ΡΠΏΠΈΠ΄Π΅ΠΌΠΈΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎΡΠ΅ΠΊ Ρ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠ°
Kidney injury in heart transplant recipients is of a complex nature and bears the features of all types of cardiorenal interaction impairment. Pre-transplant renal dysfunction, perioperative acute kidney injury, as well as factors associated with graft and immunosuppression, determine the prevalence and severity of kidney pathology in this group of patients. This review examines the pathophysiology of kidney dysfunction in heart failure, the epidemiology, and criteria for acute kidney injury.ΠΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ΅ΠΊ Ρ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ Π½Π΅ΡΠ΅Ρ Π² ΡΠ΅Π±Π΅ ΡΠ΅ΡΡΡ Π²ΡΠ΅Ρ
ΡΠΈΠΏΠΎΠ² Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΄ΠΈΠΎΡΠ΅Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΡΠ΅Π΄ΡΠ΅ΡΡΠ²ΡΡΡΠ°Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎΡΠ΅ΡΠ½Π°Ρ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡ, ΠΎΡΡΡΠΎΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ΅ΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠΌ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠ΅ΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΠΎΡΡΡ ΠΈ ΡΡΠΆΠ΅ΡΡΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ΅ΠΊ Π² ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ Π±ΠΎΠ»ΡΠ½ΡΡ
. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΡΠ΅ΠΊ ΠΏΡΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠΏΠΈΠ΄Π΅ΠΌΠΈΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎΡΠ΅ΠΊ
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+Ο+Ο- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2Β±0.6(stat)Β±0.1(syst)Β±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bcβ(2S31)+ state reconstructed without the low-energy photon from the Bcβ(1S31)+βBc+Ξ³ decay following Bcβ(2S31)+βBcβ(1S31)+Ο+Ο-. A second state is seen with a global (local) statistical significance of 2.2Ο (3.2Ο) and a mass of 6872.1Β±1.3(stat)Β±0.1(syst)Β±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
- β¦