68 research outputs found
Assessing seasonal nitrogen export to large tropical lakes
Rivers are exporting increasing amounts of nitrogen (N) to lakes, which is leading to eutrophication. However, the seasonality apparent in nutrient loading, especially in tropical areas, is thus far only partially understood. This study aims to better understand the seasonality and the sources of dissolved inorganic nitrogen (DIN) inputs from sub-basins to tropical lakes. We integrated existing approaches into a seasonal model that accounts for seasonality in human activities, meteorology and hydrology, and we applied the model to the sub-basins of a representative tropical lake: Lake Tana, Ethiopia. The model quantifies the river export of DIN by season, source and sub-basin and also accounts for open defecation to land as a diffuse source of N in rivers. Seasonality parameters were calibrated, and model outputs were validated against measured nitrogen loads in the main river outlets. The calibrated model showed good agreement with the measured nitrogen loads at the outflow of the main rivers. The model distinguishes four seasons: rainy (July–September), post-rainy (October–December), dry (January–March) and pre-rainy (April–June). The river export of DIN to Lake Tana was about 9 kton in 2017 and showed spatial and temporal variability: It was highest in the rainy and lowest in the dry seasons. Diffuse sources from agriculture were important contributors of DIN to rivers in 2017, and animal manure was the dominant source in all seasons. Our seasonal sub-basins and rivers model provides opportunities to identify the main nutrient sources to the lake and to formulate effective water quality management options. An example is nutrient application level that correspond to the crop needs in the sub-basins. Furthermore, our model can be used to analyse future trends and serves as an example for other large tropical lakes experiencing eutrophication.</p
Water pollution from food production: lessons for optimistic and optimal solutions
Food production is a source of various pollutants in aquatic systems. For example, nutrients are lost from fertilized fields, and pathogens from livestock production. Water pollution may impact society and nature. Large-scale water pollution assessments, however, often focus on single pollutants and not on multiple pollutants simultaneously. This study draws lessons from air pollution control for large-scale water quality assessments, where multi-pollutant approaches are more common. To this end, we present a framework for future water pollution assessments searching for optimistic and optimal solutions. We argue that future studies could shift their focus to better account for societal and economic targets. Participatory approaches can help to ensure the feasibility of future solutions to reduce water pollution from food production
Cost-effective management of coastal eutrophication: A case study for the yangtze river basin
Many water resources are threatened with nutrient pollution worldwide. This holds for rivers exporting increasing amounts of nutrients from the intensification of food production systems and further urbanization. This riverine nutrient transport causes coastal eutrophication. This study aims to identify cost-effective management options to simultaneously reach environmental targets for river export of nitrogen and phosphorus by the Yangtze River (China) in 2050. A newly developed modelling approach is used that integrates the Model to Assess River Inputs of Nutrients to seAs (MARINA) with a cost-optimization procedure, and accounts for socio-economic developments, land use and climate changes in a spatially explicit way. The environmental targets for river export of nutrients aim to reduce the gap between baseline and desirable nutrient export. Our baseline is based on MARINA projections for future river export of nutrients, while the desirable nutrient export reflects a low eutrophication potential. Results show the possibilities to close the gap in river export of both nutrients by 80–90% at a cost of 1–3 billion $ per year in 2050. Recycling of animal waste on cropland is an important cost-effective option; reducing synthetic fertilizer inputs provides an opportunity to compensate for the additional costs of the recycling and treatment of manure and wastewater. Our study provides new insights on the combination of cost-effective management options for sub-basins of the Yangtze. This can support the design of cost-effective and sub-basin specific management options for reducing future water pollution.Publishe
Assessing eutrophication indicators in lake basins for water quality management
Eutrophication in freshwater lakes is a global water quality issue. The cumulative concentration of nutrients such as nitrogen (N), phosphorus (P), or aggregated water quality indices (e.g., trophic state index) are frequently used metrics to monitor lake water quality. Such monitoring fails to identify the key causes of eutrophication. As a result, management and policy-making are not sufficiently informed, while it is necessary to understand the effects of the changing climate and socioeconomic development. It is therefore critical to develop and promote indicators for water quality monitoring that include sources of nutrient emissions and their pathways into the lake basin. In this study, we present indicators of drivers and pressures that account for anthropogenic emissions, socio-economic variables, and land-use. To assess the indicators, we implement an integrated modeling framework that consists of GLOBIOM-CWatM-MARINA-Lakes, which combine land use, hydrology and anthropogenic nutrient emissions to lakes. The Lake Victoria basin in Africa will be used as a case study to assess the drivers and pressures and develop a better understanding of the impacts of socio-economy and sources of nutrient emissions on lake water quality. Such drivers and pressures of a lake basin can be used as proxies, particularly in data scarce regions, to fill the gap in water quality monitoring data, and to assist in design of nutrient management policies and plans
Sources and export of nutrients in the Zambezi River basin: status and future trend
In the past decades, nutrient enrichment in African water bodies has been frequently reported and associated to long-term ecological and socio-economic consequences, such as species extinction, unsafe drinking water and compromised local livelihood. Meanwhile, rapid population growth and land-use change towards intensified food production are projected in Africa. As a result, substantial increases are expected in human-induced nutrient inputs (e.g. human waste and fertilizer) to the terrestrial and aquatic environments. This may potentially further deteriorate African water bodies.
As part of the Integrated Solution for Water, Land and Energy (IS-WEL) project, this study aims to assess the status and projected changes of nutrient sources, inputs to rivers and export to seas, shading light on possible solutions to minimize further nutrient-induced deterioration of the water bodies and maximize the availability of water of suitable quality for different sectors. This study focuses on the Zambezi river basin, the fourth largest transboundary basin draining through eight southern African countries. Nutrient sources, inputs to rivers and export to sea are estimated using the MARINA model (Model to Assess River Inputs of Nutrients to seAs) under current conditions and future climate, land use and socio-economic projections up to 2050.
Results show that for the current period (2005-2010), inputs of nutrients (nitrogen and phosphorus) to rivers and their export to sea are mainly attributed to natural sources. These sources include nitrogen fixation by the natural ecosystems, phosphorus weathering, and leaching of organic nitrogen and phosphorus from non-agricultural areas. By 2050, nutrient sources will be at least doubled due to anthropogenic inputs in the basin. Consequently, the fraction of human-induced nutrient export are projected to increase considerably, especially for dissolved inorganic phosphorus from domestic wastewater. Additionally, nutrient export to sea is strongly influenced by the intra- and inter-annual precipitation and discharge variabilities in the region. The study highlights the need to simultaneously consider source control, infrastructure development and climate adaptation to minimize further nutrient-induced deterioration of water bodies
Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin
Reducing water scarcity requires both mitigation of the increasing water pollution and adaptation to the changing availability and demand of water resources under global change. However, state-of-the-art water scarcity modeling efforts often ignore water quality and associated biogeochemical processes in the design of water scarcity reduction measures. Here, we identify cost-effective options for reducing future water scarcity by accounting for water quantity and quality in the highly water stressed and polluted Pearl River Basin in China under various socio-economic and climatic change scenarios based on the Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Our modeling approach integrates a nutrient model (MARINA-Nutrients) with a cost-optimization procedure, considering biogeochemistry and human activities on land in a spatially explicit way. Results indicate that future water scarcity is expected to increase by a factor of four in most parts of the Pearl River Basin by 2050 under the RCP8.5-SSP5 scenario. Results also show that water quality management options could half future water scarcity in a cost-effective way. Our analysis could serve as an example of water scarcity assessment for other highly water stressed and polluted river basins around the world and inform the design of cost-effective measures to reduce water scarcity
Comprehensive indicators for eutrophication in lakes
Anthropogenic influences such as urbanization, agricultural intensification, use of chemical fertilizers,and the release of sewage emit nutrients (nitrogen and phosphorus) into freshwater lakes. Excessiveamounts of nitrogen and phosphorus lead to eutrophication, which is a global water quality concern,with typical impacts such as the growth of harmful algal blooms, hypoxia and fish kills. The currentwater quality indicators used to monitor lake eutrophication focus only on water quality constituents(e.g., total phosphorus and total nitrogen). The response of lakesto nutrient inputs, however, dependson its interaction with climate, basin characteristics that include land use, hydrology andanthropogenic activities. In this study, we present a set of comprehensive indicators that account fornutrient sources and biogeochemical pathways in the lake basins and demonstrate their interactionsusing a causal network. The causal network provides a holistic perspective of nutrient dynamics andthe interactive effects of the indicators on water quality in lake basins, which is key to improving waterquality management. The indicators from this study can be used as proxies to monitor water qualitystatus. The comprehensive indicators improve mechanistic understanding of the lake nutrientdynamics, by systematically considering mechanisms of sources and factors of nutrients emission inthe basin. They can consequently fill the gap in water quality monitoring data, especially in data scarceregions such as Asia and Africa. These indicators can be used to set realistic water quality targets andare therefore beneficial in long-term policy making and sustainable water quality management
Increasing future human-induced nitrogen exports to rivers and sea in the Zambezi river basin
In the past decades, nutrient enrichment in African water bodies has been frequently reported and lead to water security challenges, such as unsafe drinking water and compromised local livelihood. Meanwhile, rapid population growth and land-use change towards intensified food production are projected in Africa. Substantial increases in anthropogenic nutrient inputs (e.g. human waste and fertilizer) to the terrestrial and aquatic environments are therefore expected. This may further deteriorate African water bodies and threaten water security.
As part of the Integrated Solution for Water, Land and Energy (IS-WEL) project funded by Global Environmental Facility and IIASA, this study aims to assess the status and projected changes of nitrogen (N) sources, associated inputs to rivers and export to sea. The study focuses on the Zambezi river basin, the 4th largest transboundary basin in Africa draining through 8 countries. N inputs to rivers and export to sea are estimated using the MARINA model (Model to Assess River Inputs of Nutrients to seAs) under current conditions and future climate, land use and socio-economic scenarios towards 2050. In addition to global climate (Representative Concentration Pathways) and socioeconomic (Shared Socioeconomic Pathways) scenarios, the study co-developed regional scenarios through stakeholder engagement in cooperation with the Zambezi Watercourse Commission. The regional scenarios, especially for sanitation and agricultural development, will later be incorporated in the model.
Preliminary results show that for the current period (2010), N input to rivers and export to sea are mainly from natural sources, namely N fixation by the natural ecosystems and organic N leaching from non-agricultural areas. By 2050, N sources in the basin will be more than doubled due to anthropogenic inputs based on the global scenarios. Consequently, the fraction of human-induced N export is projected to increase considerably. Additionally, N export to sea is strongly influenced by the intra- and inter-annual climate variabilities in the region. The study highlights the need to simultaneously consider source control and climate adaptation in the regional contexts to minimize further N-induced deterioration of water bodies and ensure regional water security
Quantifying future sanitation scenarios and progress towards SDG targets in the shared socioeconomic pathways
Two main targets of SDG 6 (Sustainable Development Goal), clean water and sanitation, are SDG 6.2, to achieve universal and equitable access to improved sanitation and to phase out unimproved sanitation (include pit latrines without a slab or platform, hanging latrines, bucket latrines and open defecation) and SDG 6.3, to halve the proportion of untreated wastewater by 2030. We compiled a global sanitation database for 200 countries. Starting from recent trends, we constructed a wide spectrum of contrasting future scenarios, i.e. the five Shared Socio-economic Pathways (SSP1-5) whereby the SSP2 scenario is ‘middle of the road’ scenario. The sanitation scenarios differ due to contrasting pathways for population growth and urbanization, economic growth and the SSP narratives. Our results indicate that it will be difficult to achieve the SDG 6 target. Target 6.2 on improved sanitation is expected to be achieved between 2070 and 2090 in SSP1, SSP2 and SSP5, while the target will not be achieved by 2100 in SSP3 and SSP4. Unimproved sanitation is projected to be phased out by 2070 in SSP1 and SSP5, or beyond 2100 in SSP3 and SSP4. The percentage of households with sewerage connection will be between 51% in SSP3 and 75% in SSP5 in 2050, and respectively 60% and 95% in 2100. Target SDG 6.3 on improving wastewater treatment will be reached by 2030 only in SSP1, followed by SSP2 and SSP5 between 2040 and 2050, while in SSP3 and SSP4 this target is not reached by 2100. The developments in wastewater treatment, expressed as percentage nutrient removal, showed an increase from 14% in 2015 to 45% in 2050 and 80% in 2100 in SSP1. But in SSP3, the global percentage is expected to have hardly changed by 2050 and have declined to 12% by 2100 due to the population growth in Sub-Saharan Africa. There is a major contrast between countries and regions. In the period between 2000 and 2015, although globally the percentage of people with unimproved sanitation declined, in 7% of the 200 countries the number of people with unimproved sanitation increased. Also, wastewater treatment globally improved, but in 16 countries it deteriorated. This inequality is particularly important in SSP3 and SSP4 where the lack of improved sanitation will continue till 2100
- …