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Food production is a source of various pollutants in aquatic

systems. For example, nutrients are lost from fertilized fields,

and pathogens from livestock production. Water pollution

may impact society and nature. Large-scale water pollution

assessments, however, often focus on single pollutants and

not on multiple pollutants simultaneously. This study draws

lessons from air pollution control for large-scale water quality

assessments, where multi-pollutant approaches are more

common. To this end, we present a framework for future

water pollution assessments searching for optimistic and

optimal solutions. We argue that future studies could shift

their focus to better account for societal and economic

targets. Participatory approaches can help to ensure the

feasibility of future solutions to reduce water pollution from

food production.
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Introduction
Food production is expected to intensify in the coming

years [1,2]. This is a result of the growing population that

need more food [2]. Intensified food production is,

however, a source of multiple pollutants in aquatic

systems [3–5]. Overuse of chemicals and poor manage-

ment strategies in the crop production sector result in

losses of pesticides [3], heavy metals, pathogens [5], and
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nutrients [6–9] in rivers from fertilized fields. Intensifies

livestock production is often a source of nutrients [6–9],

pathogens [5], and antibiotics in rivers [1]. In many world

regions, aquatic systems experience multi-pollutant pro-

blems [10]. China is one of the examples, where aquatic

systems are largely contaminated by pollutants from

food production [6–9,11]. Multi-pollutant problems are

also reported for many rivers of North America and

Europe. This holds especially for densely populated

areas. In the future, food production may add more

pollutants to aquatic systems, impacting society (e.g.

diarrhoea from pathogen contamination) and nature

(e.g. harmful algae blooms from excess nutrients).

The existing studies differ in their search for solutions

to reduce water pollution from food production. Here we

focus on two types of analyses: searches for optimistic and

for optimal solutions.

Optimistic solutions show us to what extent environmental

problems can be solved in scenarios reflecting maximum

technical, economic, and societal potentials to solve envi-

ronmental problems. In scenarios searching for optimistic

solutions, the full implementation of management strat-

egies is often assumed to reduce pollution from human

activities, for example, food production [6–9].

Optimal solutions account for trade-offs, and show us how

environmental targets can be met in the most cost-effec-

tive, equitable, or acceptable ways. Optimization analyses

typically aim to achieve certain targets while looking for

the optimal combination of environmental measures

[13,14]. Optimization analyses can be combined with

participatory approach to include stakeholders’ interest.

This is particularly relevant for sustainability targets, such

as the Sustainable Development Goals (SDGs).

Multi-pollutant, large-scale optimization analysis are

more commonly applied in air quality control [14–16]

than in water pollution control. Water quality studies

often analyze single pollutants and not multiple pollu-

tants simultaneously [3,5–9,11,12]. This holds especially

for large-scale water quality assessments.

In this study, we, therefore, draw lessons from air pollu-

tion control for large-scale water quality assessments,

where multi-pollutant approaches are more common.

We present a framework for future water quality assess-

ments searching for optimistic and optimal solutions.

Finally, we provide concluding remarks.
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Lessons from air pollution control for water
quality assessments
In the following, we draw three main lessons from exist-

ing models. In our discussion, we refer to the representa-

tive models that have been successfully applied for air

pollution control at a continental or global scale and take a

multi-pollutant perspective. We use these models as

illustrative examples for water quality assessments. We

identify opportunities for further development of existing

water quality models.

Lesson 1: Integrated models for air pollution control

have been more successful tools for international

decision making than water pollution models

Several integrated models exist for air pollution control

taking a multi-pollutant perspective. RAINS (Regional

Air Pollution Information and Simulation) model and its

extended version for greenhouse gasses, GAINS (Green-

house Gas and Air Pollution Interactions and Synergies)

are illustrative examples of how integrated models can

successfully be used in international negotiations related

to environmental problems. RAINS and GAINS can be

used to quantify emissions and air pollution impacts, and

to identify least-cost strategies for air pollution control

(cost-optimization). RAINS supported the formulation of

‘the European Commission’s 1995 Acidification Strategy’

(http://www.iiasa.ac.at/). RAINS and GAINS played an

essential role in international negotiations on the Con-

vention on Long-Range Transboundary Air Pollution

(LRTAP, http://www.unece.org/fileadmin//DAM/env/

lrtap/welcome.html). This convention was an interna-

tional agreement to deal with air pollution in Europe

signed in 1979. The convention was extended to eight

protocols on emission reduction targets for multiple pol-

lutants in the air. Today, more than 50 countries in the

world are taking part in this convention. The role of the

models is in providing scientific information to support

negotiations. This information includes quantified emis-

sions of air pollutants (e.g. sulfur dioxide, nitrogen oxides,

ammonia, and volatile organic compound) and green-

house gasses (e.g. carbon dioxide, methane, and nitrous

oxide) from European countries, environmental impacts

of those emissions, effects of reduction strategies and

costs of emission control [14–16].

The success of the RAINS and GAINS models in interna-

tional negotiations can be explained by three main reasons.

First, these models integrated multiple pollutants and their

multiple effects. For example, emissions of sulfur dioxide,

nitrogen oxides, and ammonia cause acidification of forests

and water. Nitrogen oxides and ammonia are also important

contributors to eutrophication problems. Second, the mod-

els considered regional differences in socio-economic

development and ecosystem sensitivities. The models

contributed to an increased awareness among different

stakeholders of the need to develop regional solutions,

while accounting for transboundary emissions. Third, the
www.sciencedirect.com 
models are able to provide a scientific basis to support a

dialogue between different stakeholders. Models support

the identification of optimal solutions (e.g. cost-effective)

for reducing air pollution [14,15]. Today, these models are

applied to many world regions (for China and India) with a

5-year time step up to 2050.

Water pollution models for multiple pollutants have not

been as widely used as air pollution models in interna-

tional negotiations. An important reason is that multi-

pollutant models are successful in water quality assess-

ment for the present day, but rather limited for future

assessments of water quality at the continental or global

scale. Several continental and global water quality models

exist for individual groups of water quality parameters

(e.g. nutrients). Examples of such models are Global

NEWS-2 (Nutrient Export from WaterSheds) for nutri-

ents [23,24], IMAGE-GNM (Global Nutrient Model) for

nutrients [25], GloWPa (Global Waterborne Pathogen)

for pathogens [5,26], VIC-RBM (Variable Infiltration

Capacity – River Basin Model) for water temperature

[27], Global TCS (Triclosan) for triclosan [28], global

plastic model [29], and the global pesticide model [3].

Some water quality models exist for national assessments

of water quality. Examples of such models are SPAR-

ROW (SPAtially Referenced Regressions On Watershed

attributes) for the United States [30] and MARINA

(Model to Assess River Inputs of Nutrients to seAs) for

China [4], with both models designed for nutrient pollu-

tion assessment. The WorldQual model accounts for

more than one group of pollutants in continental water

quality assessments, but not for the future [12]. WorldQ-

ual quantifies biochemical oxygen demand, faecal coli-

form bacteria, total dissolved solids and total phosphorus

(P) in river reaches for Africa, Latin America and Asia. A

few more models account for multiple pollutants in

aquatic systems at the national or continental scale

[31]. Detailed review of existing, large-scale water quality

models is presented in Strokal et al. [12].

Lesson 1 highlights the opportunity for existing global

and continental water quality models to further develop

toward multi-pollutant assessments. This is needed to

explore scenarios in which we search for optimistic and

optimal solutions that could simultaneously reduce water

pollution of multiple pollutants (see Lesson 2 below).

Lesson 2: Models can support the search for optimistic

and optimal solutions for multi-pollutant problems in

water, by assessing maximum technical feasibility and

cost-effectiveness

Models are often used as scenario tools to analyze future

water quality. Models are able to project the future water

quality by Business as Usual (BAU) scenarios. In scenarios

searching for solutions, BAU scenario often used as a

baseline scenario, accounting for climate change and

socio-economic developments. Climate change scenarios
Current Opinion in Environmental Sustainability 2019, 40:88–94

http://www.iiasa.ac.at/
http://www.unece.org/fileadmin//DAM/env/lrtap/welcome.html
http://www.unece.org/fileadmin//DAM/env/lrtap/welcome.html


90 System dynamics and sustainability
exist, for example, the IPCC Specific Report on Emissions

Scenarios (SRES)[32] or theRepresentativeConcentration

Pathways (RCPs) [33]. Scenarios exploring changes in

socio-economic development in the future are, for exam-

ple, the Millennium Ecosystem Assessment (MA) scenar-

ios [34], or theSharedSocioeconomic Pathways (SSPs) [35].

Storylines of the climate and socio-economic scenarios are

incorporated into water quality models (e.g. Global NEWS-

2, GloWPA). These storylines often form the basis of the

alternativescenarios that aim at searchingforoptimistic and

optimal solutions to reduce water pollution.

We can use water quality models to assess the maximum

technical feasibility and cost-effectiveness of solutions for

pollution abatement [8,9]. Some of the existing water

quality models (e.g. MARINA) are used to assess the maxi-

mum technical feasibility of solutions for reducing eutro-

phication problems [1]. Differences in socio-economic

development and climate change among subbasins are

considered. For example, focusing on the maximum tech-

nical potential to avoid coastal eutrophication in 2050,

Strokal et al. [8] showed the possibility to avoid coastal

eutrophication by implementing advanced technologies (e.

g. recycling animal manure to replace synthetic fertilizer)

aiming at reducing losses of nutrients to aquatic systems.

Similar studyhasalsobeen conducted for thepathogens[5].

Scenarios reflecting the maximum economic and societal

potential to solve multi-pollutant problems are less studies

for large-scale water quality assessments.

Use of models for cost-effectiveness analyses are, however,

less common for multi-pollutant water quality assessments

[17–20]. This is more common for models for air pollution

assessments as we highlighted before. RAINS and GAINS

are able to explore solutions with the maximum technical

potential, and identify the least-cost strategies to reduce

emissions of multi-pollutants to the atmosphere [14,15]

(see Lesson 1 above). Taking the cost-optimization

approaches from air pollution model as example, such as

RAINS and GAINS [36], water quality models can develop

further as tools for cost-effectiveness analyses from a multi-

pollutant perspective. Another similar example is the

Hydro-Economic Optimization model (ECHO) [13].

ECHO gives insights on cost-effective allocation of water

across different sectors for Africa in a spatially explicit way.

A few studies allocate wastewater discharge permits to

cities in the most fair way, while considering socio-

economic development [21,22,37,38]. These insights from

existing optimization approaches can form a good basis to

develop a cost-optimization model for water quality assess-

ments at the large scale.

Lesson 3: To account for societal feasibility in water

pollution assessment participatory approaches may be

needed

Accounting for the societal feasibility of implementing

environmental solutions is important. This is because it
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gives us a better understanding of whether society is prone

to accept certain measures or not. This will improve our

water quality assessments, where technical, economic, and

societal aspects are accounted for. Such assessments will

facilitate the formulation of effective environmental poli-

cies to reduce water pollution in the future.

Accounting for societal aspects is challenging, but not

impossible. Several ways to do this exist. One is to invite

stakeholders to co-design solutions based on existing sce-

narios (e.g. based on SSPs). Then, effects of such solutions

can be tested by models. Another way is to involve stake-

holders in the whole cycle of developing scenarios. Partici-

patory approaches can help [39–41]. An example is the

‘Story-And-Simulation’ approach (SAS). This approach has

been used to develop scenarios forenvironmental problems

[39]. Experts (e.g. modellers) together with stakeholders

translate qualitative narratives into quantitative scenarios

for models. This process is iterative and consists of several

steps in which stakeholders are involved [see Refs. 39–41 as

example]. Participatory approaches are part of the Water

Future and Solutions Initiative, lunched by the Interna-

tional Institute for Applied Systems Analysis (IIASA, http://

www.iiasa.ac.at/). This initiative is a good example how to

bridge science to society and policy at different scales using

various modelling tools [42]. There is a need to link the

relevant sustainable development goals (SDGs) to the

participatory approaches. For example, SDG 2 Zero Hun-

ger (food production) and SDG 6 Clean water and sanita-

tion (water quality) can be used as a scientific basis to

support co-design of solutions with stakeholders during the

participatory workshops.

Framework for future water quality
assessments
We present a framework for future water quality assess-

ments searching for optimistic and optimal solutions

(Figures 1 and 2). We design this framework based on

the lessons that we draw for large-scale water quality

assessments (Section 2). Our framework provides an

illustrative example of how different modelling

approaches can be combined, to explore optimistic and

optimal solutions for water pollution from food produc-

tion or other pollution sources (e.g. human waste) taking a

multi-pollutant perspective. The frame work covers dri-

vers (food production and water pollution controls),

pressure (pollutant losses), state (pollutant loads and

concentrations), and impact (water pollution impact on

nature and society) (Figure 1). For the water pollution

impact, various indicators can be integrated into the

framework. For example. Indicators for Coastal Eutrophi-

cation Potential can be used to reflect the impact of

nutrient enrichment in the coastal water [43].

The framework allows for two types of analyses: exploring

optimistic and optimal solutions for water pollution

(Figure 1). It focuses on water pollutants from food
www.sciencedirect.com
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Figure 1
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Framework for future water quality assessments searching for optimistic and optimal solutions. Examples of targets are shown in Figure 2.

*Optimistic scenario analysis: [6–9].

**Cost optimization: [51–54].

***Multi-index Gini optimization: [21,22,37,38].
production, such as nutrients, pesticides, and pathogens

[3,5,25]. Exploring optimistic futures can be done through

scenario analyses: starting from storylines, and optimistic

assumptions about emission control. We can analyze

future trends in water pollution, the costs of emission

control, and the impacts of pollution on nature and

society. Exploring optimal solutions typically starts from

environmental targets, and aims at analyzing optimal (e.g.

cost-effective) solutions to reach these targets. Our frame-

work thus follows Lessons 1 and 2 as formulated above.

Existing models could form the basis of the framework.

To address the impact of food production on water

quality, the framework should be able to quantify the

pollutant losses to waters from the food production chain.

It should also include control measures to reduce the
www.sciencedirect.com 
pollutant losses from the food production chain. It also

needs to account for the transport of pollutants through

the environment, and retention processes. Pollutants may

be transported by rivers from upstream to downstream

and eventually entering the seas. During the transporta-

tion, pollutants can be lost or retained in the river systems.

Examples are nitrogen losses due to denitrification, P

retentions in sediments and retentions of various pollu-

tants due to river damming. Finally, the framework

should account for effects of pollutants in the environ-

ment, on nature and society. Several models exist to

quantify pollutant flows from food production to the

aquatic systems at large scales [12,44,45]. These models

can be used to identify ‘hotspots’ of water pollution, and

to analyze past and future trends in water pollution

[12,46]. They could form the basis of the framework.
Current Opinion in Environmental Sustainability 2019, 40:88–94
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Figure 2
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Overview of how targets (for people, planet and profit) and solutions

are linked. Colors in the cells follow the colors in Figure 1. So far,

scenario analyses searching for optimistic solutions for water quality

focused mostly on meeting environmental targets by technical

solutions (the green box in the graph). Yellow boxes refers to

optimization analyses that can be applied to large-scale water quality

issues, of which some examples can be found in the literature. Grey

cells indicate types of analyses that are not yet widely performed.
Exploring optimistic solutions could start from optimistic

storylines about future trends in society, and about what is

technically feasible in terms of pollution control (Figure 1).

Models can then be used for scenario analysis, analyzing

future trends in water pollution while assuming full imple-

mentation of existing and future technologies to reduce

water pollution. One could compare the results with, for

instance, targets for pollution control deduced from people,

planet or profit boundaries (Figure 2). For China, some

examples exist of modelling studies exploring optimistic

scenarios for reducing nutrient pollution by technically

feasible options at basin or national scale [8,9,47]. These

examples indicate that it is technically possible to reduce

pollution to low levels in the future. So far, scenario analyses

searching for optimistic solutions focused mostly on meet-

ing environmental targets by technical solutions (green box

in Figure 2). In addition to optimism about technologies,

one could also add optimistic assumptions about human

behavior. For instance, storylines may assume sustainable

development in society, reflected, for instance, by envi-

ronment-friendly behavior. In such futures, farmers and

consumers will be concerned about the environment and
Current Opinion in Environmental Sustainability 2019, 40:88–94 
thus do not overuse agrochemicals in crop productions, and

move to vegetarian diets. Optimistic futures may, further-

more, assume that industry and waste water treatment may

aim for green development.

Exploring optimal solutions for water pollution, could start

from environmental targets, to be reached in an optimal

way (Figure 1). Optimal can be interpreted here as

economic, technical or social optimum (Figure 2, Section

1). In Figure 1, we give an example of searching for cost-

effective solutions. Cost-optimization has been success-

fully applied in controlling the air pollution in European

countries (see Section 2). To account for people, planet

and profit simultaneously in optimization analyses, the

Gini coefficient could be used (Figure 2). The Gini

coefficient reflects equality of income or wealth within

society according to the Lorenz curve [48,49]. The Gini

coefficient can also be used to reflect the equality in use of

environmental resources, such as allocating the waste

discharge permit [21,22,37,38]. Absolute equality in a

country is reached when all people have an equal share

in resources, or in economy. The Gini coefficient can be

used in optimization analysis to search for strategies to

meet targets (for people, planet or profit) in such a way

that social equality is maximized. The Gini coefficient for

pollutant discharge can be quantified for various indexes,

such as population density or gross domestic product.

Multi-index optimization involves optimization of the

equality in the discharge of water pollution for multiple

indexes. One could apply this approach in water pollution

assessment, for instance to allocate pollution rights [22].

Optimistic scenarios and optimization approaches can assist

decision makers in their search for solution to water pollu-

tion (see Lessons 1 and 2). To implement the framework

proposed in Figure 1, some hurdles have to be taken if we

want to apply it for multi-pollutant problems. First, existing

large scale water quality models run at different spatial and

temporal scales. The abovementioned global and regional

water quality models (Sections 1 and 2) calculate pollutant

flows at scales of 0.5� grid (e.g. IMAGE-GNM, GloWPa,

VIC-RBM), basin scale (e.g. Global NEWS-2, Triclosan

model), or subbasin scale (e.g. MARINA, WorldQual)

[3,5,12,25]. Some of them are process-based (e.g.

IMAGE-GNM, VIC-RBM) while others take a lumped,

parameter-based modelling approach (e.g. Global NEWS-

2, MARINA). Most of them are steady-state models that

quantify the annual pollutant flows [details on model

reviews are in Ref. 12]. A few models quantify seasonal

nutrient flows from land to seas globally [50] or nationally

[30]. However, pollution control typically takes place at

international, national, or local scales (administrate scale),

and in shorter timeframes. It is a challenge to integrate

biophysical and administrative scales in water assessments.

A second challenge is how to account for societal feasibility.

Lesson 3 above calls for participatory approaches.
www.sciencedirect.com
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Stakeholders could be involved in formulating storylines,

targets and in identifying optimistic and optimal solutions,

while using the modelling framework presented in

Figure 1. This will help to ensure that optimistic futures

are realistic, and that optimal solutions account for trade-offs.

Our presented framework can 1) advance the field of water

quality modelling; 2) help to integrate people, planet, and

profit-related targets with technical, economic, and social

solutions; 3) help to link water and food security assess-

ments. The framework can help to achieve the Sustainable

Development Goals (SDGs) for Clean Water and Sanita-

tion (SDG 6) and Zero Hunger (SDG 2) at the same time.

For example, targets for food production (related to SDG 2)

and water quality (SDG 6) can be used as multiple con-

strains in optimization analyses. This may help to identify

possible synergies and trade-offs.

Concluding remarks
In this study, we argue that large-scale water quality

assessments can learn from air pollution control to iden-

tify optimistic and optimal solutions. Both optimistic (e.g.

technically feasible) and optimal (e.g. cost-effective)

solutions are needed for effective reduction of future

water pollution from food production. We draw three

main lessons from air pollution control for water quality

assessments, searching for optimistic and optimal solu-

tions. These lessons are: 1) Integrated models for air

pollution control have been more successful tools for

international decision making than water pollution mod-

els; 2) Models can support the search for optimistic and

optimal solutions for multiple pollutant problems in

water, by assessing maximum technical feasibility and

cost-effectiveness; 3) To account for societal feasibility in

water pollution assessment participatory approaches may

be needed. Next, we present a framework for exploring

optimistic and optimal solutions for water quality pro-

blems. The framework combines optimistic scenarios and

optimization approaches with water quality models to

explore the optimistic and optimal solutions for water

pollution. We show that current water quality studies

focus on environmental targets and technical solutions.

We argue that future studies could shift their focus to

better account for societal and economic targets. Partici-

patory approaches may be needed to ensure feasibility of

future solutions to reduce water pollution from food

production.
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