2 research outputs found

    Affinity of extracellular phosphatases for ELF97 phosphate in aquatic environments

    Get PDF
    Recently, the phosphatase substrate ELF97 phosphate (ELFP) has been employed to study the presence of extracellular phosphatases in different plankton populations in natural aquatic environments. Kinetic properties of ELFP hydrolysis by natural extracellular phosphatases are, however, mostly unknown. We indirectly studied the affinity of extracellular phosphatases for ELFP in different aquatic environments through its ability to inhibit the hydrolysis of 4-methylumbelliferyl phosphate (4MUP). Values of inhibition constants, Kᔹ, which correspond to the concentrations necessary for half saturation of phosphatases by ELFP, were lowest (0.18–4.5 ”mol L⁻Âč) in the oligotrophic Mediterranean Sea. We found higher values (i.e. lower affinity) in oligo- to mesotrophic acidified lakes (5.2–14 ”mol L–1), in a eutrophic reservoir (13–35 ”mol L⁻Âč) and in a pure culture of the marine bacterium Alteromonas infernus (29 ”mol L⁻Âč). ELFP had a pronounced effect on the parameter Km (Michaelis constant) of 4MUP saturation kinetics, while its effect on the parameter Vmax was low. This behaviour is compatible with the assumption of competitive interaction between 4MUP and ELFP. Our experiments indicated that the assay ELFP concentration in the detection kit used was 250–500 ”mol L⁻Âč (after the recommended dilution to a ratio of 1:20), which would ensure >99% saturation of extracellular phosphatases in marine environments and >90% saturation in the studied fresh waters

    Extracellular phosphatases produced by phytoplankton and other sources in shallow eutrophic lakes (Wuhan, China): taxon-specific versus bulk activity

    No full text
    Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1-11 mu mol l(-1) h(-1)), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 mu g P l(-1) to similar to 1.5 mg P l(-1)) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the 'traditional' interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration.Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1-11 mu mol l(-1) h(-1)), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 mu g P l(-1) to similar to 1.5 mg P l(-1)) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the 'traditional' interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration
    corecore