26 research outputs found

    Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ коэффициСнт сопротивлСния Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами наноструктурированных ΠΏΠ»Π΅Π½ΠΎΠΊ крСмния

    Get PDF
    The regularities of changes in the concentration of an electrically active dopant in a nanostructured silicon film by changing the electrical resistivity depending on the doping conditions were investigated. The dependences of the changes in the obtained structures doped with rare-earth elements, such as La, Eu, Sm, Dy, Gd (lanthanides), on nanostructured silicon films are determined. The regularities of the obtained films changes and the temperature coefficient of resistance (TCR) change depending on the formation conditions are established. The regularities of the TCR are shown depending on the selected conditions for doping or non-doping of nanostructured silicon films with various impurities. It is shown that the main conditions under which the effect and change in the temperature coefficient of resistors resistance on thin films using rare-earth elements, such as oxygen, boron and phosphorus in the bulk of the film, is considered to be the temperature effect after deposition.ИсслСдовались закономСрности измСнСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ элСктричСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ примСси Π² ΠΏΠ»Π΅Π½ΠΊΠ΅ наноструктурированного крСмния, ΠΏΡƒΡ‚Π΅ΠΌ измСнСния ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сопротивлСния Π² зависимости ΠΎΡ‚ условий лСгирования. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ зависимости измСнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… структур, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами (Π Π—Π­), Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΊΠ°ΠΊ La, Eu, Sm, Dy, Gd (Π»Π°Π½Ρ‚Π°Π½ΠΎΠΈΠ΄Ρ‹), Π½Π° наноструктурированных ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… крСмния. УстановлСны закономСрности измСнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ коэффициСнта сопротивлСния (ВКБ) Π² зависимости ΠΎΡ‚ условий формирования. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ закономСрности измСнСния ВКБ Π² зависимости ΠΎΡ‚ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… условий лСгирования ΠΈΠ»ΠΈ нСлСгирования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ примСсями наноструктурированных ΠΏΠ»Π΅Π½ΠΎΠΊ крСмния. Показано, Ρ‡Ρ‚ΠΎ основными условиями, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ воздСйствиС ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ коэффициСнта сопротивлСния рСзисторов Π½Π° Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… с использованиСм Π Π—Π­, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ кислород, Π±ΠΎΡ€ ΠΈ фосфор, Π² объСмС ΠΏΠ»Π΅Π½ΠΊΠΈ, считаСтся Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ΅ влияниС ΡƒΠΆΠ΅ послС осаТдСния

    Temperature resistance coefficient of doped with rare earth elements nanostructured silicon films

    Get PDF
    ИсслСдовались закономСрности измСнСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ элСктричСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ примСси Π² ΠΏΠ»Π΅Π½ΠΊΠ΅ наноструктурированного крСмния, ΠΏΡƒΡ‚Π΅ΠΌ измСнСния ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сопротивлСния Π² зависимости ΠΎΡ‚ условий лСгирования. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ зависимости измСнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… структур, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами (Π Π—Π­), Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΊΠ°ΠΊ La, Eu, Sm, Dy, Gd (Π»Π°Π½Ρ‚Π°Π½ΠΎΠΈΠ΄Ρ‹), Π½Π° наноструктурированных ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… крСмния. УстановлСны закономСрности измСнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ коэффициСнта сопротивлСния (ВКБ) Π² зависимости ΠΎΡ‚ условий формирования. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ закономСрности измСнСния ВКБ Π² зависимости ΠΎΡ‚ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… условий лСгирования ΠΈΠ»ΠΈ нСлСгирования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ примСсями наноструктурированных ΠΏΠ»Π΅Π½ΠΎΠΊ крСмния. Показано, Ρ‡Ρ‚ΠΎ основными условиями, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ воздСйствиС ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ коэффициСнта сопротивлСния рСзисторов Π½Π° Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… с использованиСм Π Π—Π­, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ кислород, Π±ΠΎΡ€ ΠΈ фосфор, Π² объСмС ΠΏΠ»Π΅Π½ΠΊΠΈ, считаСтся Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ΅ влияниС ΡƒΠΆΠ΅ послС осаТдСния.The regularities of changes in the concentration of an electrically active dopant in a nanostructured silicon film by changing the electrical resistivity depending on the doping conditions were investigated. The dependences of the changes in the obtained structures doped with rare-earth elements, such as La, Eu, Sm, Dy, Gd (lanthanides), on nanostructured silicon films are determined. The regularities of the obtained films changes and the temperature coefficient of resistance (TCR) change depending on the formation conditions are established. The regularities of the TCR are shown depending on the selected conditions for doping or non-doping of nanostructured silicon films with various impurities. It is shown that the main conditions under which the effect and change in the temperature coefficient of resistors resistance on thin films using rare-earth elements, such as oxygen, boron and phosphorus in the bulk of the film, is considered to be the temperature effect after deposition

    Π ΠΠ—Π›ΠžΠ–Π•ΠΠ˜Π• ΠœΠžΠΠžΠ“Π˜Π”Π Π˜Π”ΠžΠ’ ΠšΠ Π•ΠœΠΠ˜Π― И Π“Π•Π ΠœΠΠΠ˜Π― Π‘ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π•Πœ ΠŸΠ›ΠΠ’Π˜ΠΠž-Π Π•ΠΠ˜Π•Π’ΠžΠ™ Π¨ΠŸΠ˜ΠΠ•Π›Π˜ Π’ ΠšΠΠ§Π•Π‘Π’Π’Π• ΠšΠΠ’ΠΠ›Π˜Π—ΠΠ’ΠžΠ Π

    Get PDF
    High degree of intensification of monohydrides decomposition process with use of catalysts is shown. It is established that the completeness decomposition of monohydrides in the presenceof platinoreniyevy spinel increases for 35-55 %.Показана высокая ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ интСнсификации процСсса разлоТСния ΠΌΠΎΠ½ΠΎΠ³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠ² с использованиСм ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»Π½ΠΎΡ‚Π° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠ½ΠΎΠ³ΠΈΠ΄Ρ€ΠΈΠ΄ΠΎΠ² Π² присутствии ΠΏΠ»Π°Ρ‚ΠΈΠ½ΠΎΡ€Π΅Π½ΠΈΠ΅Π²ΠΎΠΉ шпинСли возрастаСт Π½Π° 35-55%

    КомплСксная ΠΎΡ†Π΅Π½ΠΊΠ° Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ развития Π΄Π΅Ρ‚Π΅ΠΉ, Π·Π°Ρ‡Π°Ρ‚Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ оплодотворСния

    Get PDF
    Introduction. The high frequency of the use of assisted reproductive technologies and the inconsistency of information about the parameters of the cognitive development of IVF children determined the formulation of the research problem.The purpose of the work is to assess the originality of the speech development of children and adolescents conceived using the IVF procedure. The age of the children at the time of the survey was from 5 to 15 years.Methods and materials. A sample of 51 children (29 boys), mean age (7.9Β±2.8) years, 14 children had psychiatric diagnoses (ASD, mental retardation, etc.). Research methods: speech therapy assessment of speech development, neuropsychological diagnostics according to L.S. Tsvetkova, WICS, descriptive statistics, correlation analysis.Results. 41% of children had mild variants of speech development delay under 3 years old, 59 % of children had normal speech development. With age, the frequency of detected deviations in speech development decreases, so that in older age group (from 11 to 15 years old), 85 % have normotypical development of speech. Correlation analysis showed the originality of the correlations of the parameters of speech development, neuropsychological assessment, and scores on Wechsler subtests.Conclusions. An unambiguous conclusion about the violation of speech development in children conceived by IVF cannot be drawn, however, in the presence of mental pathology and taking into account the age of the mother and the number of ART procedures, attention should be paid to the provision of speech therapy and neuropsychological correction from an early age.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Высокая частота использования Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ (Π’Π Π’) ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ развития Π΄Π΅Ρ‚Π΅ΠΉ, Π·Π°Ρ‡Π°Ρ‚Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ оплодотворСния (ЭКО) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»Π° постановку ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ исслСдования.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ β€” ΠΎΡ†Π΅Π½ΠΊΠ° своСобразия Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ развития Π΄Π΅Ρ‚Π΅ΠΉ ΠΈ подростков, Π·Π°Ρ‡Π°Ρ‚Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ЭКО ΠΈ находящихся Π² возрастном ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΎΡ‚ 5 Π΄ΠΎ 15 Π»Π΅Ρ‚.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. Π’Ρ‹Π±ΠΎΡ€ΠΊΠ° ΠΈΠ· 51 Ρ€Π΅Π±Π΅Π½ΠΊΠ° (29 ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊΠΎΠ²), срСдний возраст β€” (7,9Β±2,8) Π³ΠΎΠ΄Π°, 14 Π΄Π΅Ρ‚Π΅ΠΉ ΠΈΠΌΠ΅Π»ΠΈ психиатричСскиС Π΄ΠΈΠ°Π³Π½ΠΎΠ·Ρ‹ (расстройства аутистичСского спСктра(РАБ), ΡˆΠΈΠ·ΠΎΡ‚ΠΈΠΏΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ расстройство (Π¨Π’Π ) ΠΈ Π΄Ρ€.). ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π»ΠΎΠ³ΠΎΠΏΠ΅Π΄ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ развития Ρ€Π΅Ρ‡ΠΈ, Π½Π΅ΠΉΡ€ΠΎΠΏΡΠΈΡ…ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ диагностику ΠΏΠΎ Π›.Π‘. Π¦Π²Π΅Ρ‚ΠΊΠΎΠ²ΠΎΠΉ, диагностику IQ ΠΏΠΎ ВСкслСру, ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ статистику, коррСляционный Π°Π½Π°Π»ΠΈΠ·.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£ 41 % Π΄Π΅Ρ‚Π΅ΠΉ имСлись Π»Π΅Π³ΠΊΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ развития Π² возрастС Π΄ΠΎ 3 Π»Π΅Ρ‚, Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»Π°ΡΡŒ Ρ€Π΅Ρ‡ΡŒ Ρƒ 59 % Π΄Π΅Ρ‚Π΅ΠΉ. Π‘ возрастом частота выявляСмых ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π² Ρ€Π΅Ρ‡Π΅Π²ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΏΠ°Π΄Π°Π΅Ρ‚, Π² ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΉ возрастной Π³Ρ€ΡƒΠΏΠΏΠ΅ (ΠΎΡ‚ 11 Π΄ΠΎ 15 Π»Π΅Ρ‚) Π½ΠΎΡ€ΠΌΠ° развития Ρ€Π΅Ρ‡ΠΈ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»Π°ΡΡŒ Ρƒ 85 % испытуСмых. ΠšΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π» своСобразиС коррСляционных плСяд Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ, Π·Π°Ρ‡Π°Ρ‚Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ЭКО, ΠΏΡ€ΠΈ сопоставлСнии ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ развития, нСйропсихологичСской ΠΎΡ†Π΅Π½ΠΊΠΈ, Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ субтСстам ВСкслСра.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠžΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ Π²Ρ‹Π²ΠΎΠ΄Π° ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ Ρ€Π΅Ρ‡Π΅Π²ΠΎΠ³ΠΎ развития Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ, Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ЭКО, ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ нСльзя, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ психичСской ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ возраста ΠΌΠ°Ρ‚Π΅Ρ€ΠΈ ΠΈ числа примСнСния ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ Π’Π Π’ слСдуСт ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅ логопСдичСской ΠΈ нСйропсихологичСской ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ с Ρ€Π°Π½Π½Π΅Π³ΠΎ возраста

    Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)

    Get PDF
    Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. Β© 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco

    Formation of Nanostructured Films of Polycrystalline Silicon Doped with Germanium

    Get PDF
    The impact of germanium as isovalent impurity on the process of formation of nanostructured films of polycrystalline silicon doped with germanium is investigated

    ВСрмодинамичСский Π°Π½Π°Π»ΠΈΠ· основных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π² систСмС ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ-Ρ‚ΠΈΡ‚Π°Π½ ΠΏΡ€ΠΈ ΡΠ°ΠΌΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰Π΅ΠΌΡΡ высокотСмпСратурном синтСзС

    No full text
    Chemical reactions and mechanisms of structure formation in the high-temperature synthesis (SHS) of titanium disilicide are considered. It has been established that the course of exothermic reaction of the silicon-titanium system is determined by the process initiation temperature, the initial nanoscale of powder particles and titanium-to-silicon mass ratio.На основании Π°Π½Π°Π»ΠΈΠ·Π° тСрмодинамичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² основных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π² систСмС ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ-Ρ‚ΠΈΡ‚Π°Π½ ΠΏΡ€ΠΈ ΡΠ°ΠΌΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰Π΅ΠΌΡΡ высокотСмпСратурном синтСзС (Π‘Π’Π‘) ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания наноструктурных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² дисилицида Ρ‚ΠΈΡ‚Π°Π½Π° (TiSi2) ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΡΠ°ΠΌΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ высокотСмпСратурного синтСза. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ…ΠΎΠ΄ экзотСрмичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π² систСмС ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ-Ρ‚ΠΈΡ‚Π°Π½ опрСдСляСтся ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ процСсса, исходным Π½Π°Π½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠΌ частиц ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈ массовым ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΈΡ‚Π°Π½Π° ΠΊ ΠΊΡ€Π΅ΠΌΠ½ΠΈΡŽ

    Features of nanoclusters formation in the deposition mode of superthin films SI(GE)

    Get PDF
    With the use of the scanning, transmission and atomic-force microscopy and Raman scattering of ranges the features of nanoclusters formation of Si, Ge, and solid SiGe solution the deposition mode of superthin films Si(Ge) are studied. The leading mechanism in the process of films crystallization with silicon, germanium and silicongermanium nanostructures alloyed by Ge on all types of initial surfaces of substrates is the migration of silicon and germanium atoms on a surface of films are established. For the self-organization of SiGe nanoclusters a small shift of surface atoms of complex structures on a clean surface with the formation of bonds like Ge–Ge or Si–Si is favorable. It is caused by the fact that under the thermal treatment the atoms rejected from an ideal position in a crystal grid create additional force fields and it leads to the change of elastic properties of the whole nanocrystal

    Investigation of Influence of Cleanliness of the Surface Substrate on Formation and Transformation of Silicon-Germanium Nanoclusters

    Get PDF
    Established that the degree surface perfection to be seen as an essential part of the general task of preparing a clean surface before the process of formation of SiGe nanoclusters and the suppression of their transformation from nanoscale to microsizes. A small displacement of the surface atoms of complex structures on a clean surface with the formation of bonds of Ge -Ge or Si- Si is beneficial for self-organization of nanoclusters SiGe
    corecore