74 research outputs found

    The Digital Elevation Model Intercomparison eXperiment DEMIX, a community-based approach at global DEM benchmarking

    Get PDF
    This paper presents an initiative recently launched under the auspices of the Committee on Earth Observation Satellites (CEOS) aiming at providing harmonised terminology and methods, as well as practical guidelines and results allowing the intercomparison of continental or global Digital Elevation Models (DEM). As the work is still ongoing the main purpose of this article is not the dissemination of the outcome but rather to inform the wider community about the initiative, communicate the chosen approach to raise awareness, and attract possible further participants. Nevertheless, some preliminary results are included and an outlook on planned next steps is provided

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    A cross-sectional study of self-reported chemical-related sensitivity is associated with gene variants of drug-metabolizing enzymes

    Get PDF
    BACKGROUND: N-acetyltransferases (NAT) and glutathione S-transferases (GST) are involved in the metabolism of several ubiquitous chemical substances leading to the activation and detoxification of carcinogenic heterocyclic and aromatic amines. Since polymorphisms within these genes are described to influence the metabolism of ubiquitous chemicals, we conducted the present study to determine if individuals with self-reported chemical-related sensitivity differed from controls without self-reported chemical-related sensitivity with regard to the distribution of genotype frequencies of NAT2, GSTM1, GSTT1, and GSTP1 polymorphisms. METHODS: Out of 800 subjects who answered a questionnaire of ten items with regard to their severity of chemical sensitivity 521 unrelated individuals agreed to participate in the study. Subsequently, genetic variants of the NAT2, GSTM1, GSTT1, and GSTP1 genes were analyzed. RESULTS: The results show significant differences between individuals with and without self-reported chemical-related sensitivity with regard to the distribution of NAT2, GSTM1, and GSTT1 gene variants. Cases with self-reported chemical-related sensitivity were significantly more frequently NAT2 slow acetylators (controlled OR = 1.81, 95% CI = 1.27–2.59, P = 0.001). GSTM1 and GSTT1 genes were significantly more often homozygously deleted in those individuals reporting sensitivity to chemicals compared to controls (GSTM1: controlled OR 2.08, 95% CI = 1.46–2.96, P = 0.0001; GSTT1: controlled OR = 2.80, 95% CI = 1.65–4.75, P = 0.0001). Effects for GSTP1 gene variants were observed in conjunction with GSTM1, GSTT1 and NAT2 gene. CONCLUSION: The results from our study population show that individuals being slow acetylators and/or harbouring a homozygous GSTM1 and/or GSTT1 deletion reported chemical-related hypersensitivity more frequently

    Witnessing Violence Toward Siblings: An Understudied but Potent Form of Early Adversity

    Get PDF
    Research on the consequences of witnessing domestic violence has focused on inter-adult violence and most specifically on violence toward mothers. The potential consequences of witnessing violence to siblings have been almost entirely overlooked. Based on clinical experience we sought to test the hypothesis that witnessing violence toward siblings would be as consequential as witnessing violence toward mothers. The community sample consisted of unmedicated, right-handed, young adults who had siblings (n = 1,412; 62.7% female; 21.8±2.1 years of age). History of witnessing threats or assaults to mothers, fathers and siblings, exposure to parental and sibling verbal abuse and physical abuse, sexual abuse and sociodemographic factors were assessed by self-report. Symptoms of depression, anxiety, somatization, anger-hostility, dissociation and ‘limbic irritability’ were assessed by rating scales. Data were analyzed by multiple regression, with techniques to gauge relative importance; logistic regression to assess adjusted odds ratios for clinically-significant ratings; and random forest regression using conditional trees. Subjects reported witnessing violence to siblings slightly more often than witnessing violence to mothers (22% vs 21%), which overlapped by 51–54%. Witnessing violence toward siblings was associated with significant effects on all ratings. Witnessing violence toward mother was not associated with significant effects on any scale in these models. Measures of the relative importance of witnessing violence to siblings were many fold greater than measures of importance for witnessing violence towards mothers or fathers. Mediation and structural equation models showed that effects of witnessing violence toward mothers or fathers were predominantly indirect and mediated by changes in maternal behavior. The effects of witnessing violence toward siblings were more direct. These findings suggest that greater attention be given to the effects of witnessing aggression toward siblings in studies of domestic violence, abuse and early adversity

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
    • …
    corecore