69 research outputs found

    Genome-Wide Gene Expression Analysis in Cancer Cells Reveals 3D Growth to Affect ECM and Processes Associated with Cell Adhesion but Not DNA Repair

    Get PDF
    Cell morphology determines cell behavior, signal transduction, protein-protein interaction, and responsiveness to external stimuli. In cancer, these functions profoundly contribute to resistance mechanisms to radio- and chemotherapy. With regard to this aspect, this study compared the genome wide gene expression in exponentially growing cell lines from different tumor entities, lung carcinoma and squamous cell carcinoma, under more physiological three-dimensional (3D) versus monolayer cell culture conditions. Whole genome cDNA microarray analysis was accomplished using the Affymetrix HG U133 Plus 2.0 gene chip. Significance analysis of microarray (SAM) and t-test analysis revealed significant changes in gene expression profiles of 3D relative to 2D cell culture conditions. These changes affected the extracellular matrix and were mainly associated with biological processes like tissue development, cell adhesion, immune system and defense response in contrast to terms related to DNA repair, which lacked significant alterations. Selected genes were verified by semi-quantitative RT-PCR and Western blotting. Additionally, we show that 3D growth mediates a significant increase in tumor cell radio- and chemoresistance relative to 2D. Our findings show significant gene expression differences between 3D and 2D cell culture systems and indicate that cellular responsiveness to external stress such as ionizing radiation and chemotherapeutics is essentially influenced by differential expression of genes involved in the regulation of integrin signaling, cell shape and cell-cell contact

    Co-creation with Companies: A Means to Enhance Societal Impact of University Researchers?

    Get PDF
    In this chapter, we explore co-creation as a form of societal interaction of science. We approach co-creation as a goal-oriented form of dynamic interaction aiming at mutual benefit of all parties. As such, we exclude technology transfer and other linear societal interaction forms that follow a closed-model innovation format. We argue that focusing solely on tapping the needs of researchers and ‘pure’ science would lead to ignoring the broader context in which researchers work. An excessive focus on meeting the needs of external stakeholders could jeopardize the preconditions of science. Hence, this chapter explores how researcher-company co-creation can be nurtured in a heavily institutionalized setting, where established rules govern the process of knowledge production and protect research integrity. The co-creation process is analyzed by combining Nonaka’s SECI model and Strober’s interdisciplinary interaction model for knowledge creation. We find that the core of this process lies facilitated dialogue, which is seen as open knowledge sharing between equal participants

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: Mucin 2-interleukin 10-deficient mice

    No full text
    Expression of the mucin MUC2, the structural component of the colonic mucus layer, is lowered in ulcerative colitis. Furthermore, interleukin (IL)-10 knockout (IL-10-/-) mice develop colitis and have reduced Muc2 levels. Our aim was to obtain insight into the role of Muc2 and IL-10 in epithelial protection. Muc2-IL-10 double-knockout (Muc2/IL-10DKO) mice were characterized and compared to Muc2 knockout (Muc2-/-), IL-10-/-and wild-type (WT) mice. Clinical symptoms, intestinal morphology and differences in epithelial-specific protein levels were analyzed. In addition, levels of the pro-inflammatory cytokines in colonic tissue and serum were determined. IL-10-/-mice were indistinguishable from WT mice throughout this experiment and showed no clinical or histological signs of colitis. Muc2/IL-10DKOand Muc2-/-mice showed significant growth retardation and clinical signs of colitis at 4 and 5 weeks, respectively. Muc2/IL-10DKOmice had a high mortality rate (50% survival/5 weeks) compared to the other types of mice (100% survival). Microscopic analysis of the colon of Muc2/IL-10DKOmice showed mucosal thickening, increased proliferation, superficial erosions and a diminished Muc4 expression. Furthermore, pro-inflammatory cytokines were significantly upregulated, both in tissue (mRNA) and systemically in Muc2/IL-10DKOmice. In conclusion, Muc2/IL-10DKOmice develop colitis, which is more severe in every aspect compared to Muc2-/-and IL-10-/-mice. These data indicate that (i) in case of Muc2 deficiency, the anti-inflammatory cytokine IL-10 can control epithelial damage, though to a limited extent and (ii) the mucus layer is most likely a key factor determining colitis
    corecore