1,872 research outputs found

    Hybrid reasoning context platform

    Get PDF

    Managing and using context aware information

    Get PDF

    Quantitive analysis of electric vehicle flexibility : a data-driven approach

    Get PDF
    The electric vehicle (EV) flexibility, indicates to what extent the charging load can be coordinated (i.e., to flatten the load curve or to utilize renewable energy resources). However, such flexibility is neither well analyzed nor effectively quantified in literature. In this paper we fill this gap and offer an extensive analysis of the flexibility characteristics of 390k EV charging sessions and propose measures to quantize their flexibility exploitation. Our contributions include: (1) characterization of the EV charging behavior by clustering the arrival and departure time combinations that leads to the identification of type of EV charging behavior, (2) in-depth analysis of the characteristics of the charging sessions in each behavioral cluster and investigation of the influence of weekdays and seasonal changes on those characteristics including arrival, sojourn and idle times, and (3) proposing measures and an algorithm to quantitatively analyze how much flexibility (in terms of duration and amount) is used at various times of a day, for two representative scenarios. Understanding the characteristics of that flexibility (e.g., amount, time and duration of availability) and when it is used (in terms of both duration and amount) helps to develop more realistic price and incentive schemes in DR algorithms to efficiently exploit the offered flexibility or to estimate when to stimulate additional flexibility. (C) 2017 Elsevier Ltd. All rights reserved

    Large-scale residential demand response ICT architecture

    Get PDF

    Automatic learning of user interests for personalized communication services

    Get PDF
    In view of the overwhelming popularity of user generated content new intelligent services are needed to filter this content based on personal interests. In this paper we present a set of algorithms for retrieving content, based on dynamic user profiles and learning capabilities. To illustrate the approach taken, a rich communication service is presented

    Supporting development and management of smart office applications: a DYAMAND case study

    Get PDF
    To realize the Internet of Things (IoT) vision, tools are needed to ease the development and deployment of practical applications. Several standard bodies, companies, and ad-hoc consortia are proposing their own solution for inter-device communication. In this context, DYnamic, Adaptive MAnagement of Networks and Devices (DYAMAND) was presented in a previous publication to solve the interoperability issues introduced by the multitude of available technologies. In this paper a DYAMAND case study is presented: in cooperation with a large company, a monitoring application was developed for flexible office spaces in order to reliably reorganize an office environment and give real-time feedback on the usage of meeting rooms. Three wireless sensor technologies were investigated to be used in the pilot. The solution was deployed in a "friendly user" setting at a research institute (iMinds) prior to deployment at the large company's premises. Based on the findings of both installations, requirements for an application platform supporting development and management of smart (office) applications were listed. DYAMAND was used as the basis of the implementation. Although the local management of networked devices as provided by DYAMAND enables easier development of intelligent applications, a number of remote services discussed in this paper are needed to enable reliable and up-to-date support (of new technologies)

    Distributed multi-agent algorithm for residential energy management in smart grids

    Get PDF
    Distributed renewable power generators, such as solar cells and wind turbines are difficult to predict, making the demand-supply problem more complex than in the traditional energy production scenario. They also introduce bidirectional energy flows in the low-voltage power grid, possibly causing voltage violations and grid instabilities. In this article we describe a distributed algorithm for residential energy management in smart power grids. This algorithm consists of a market-oriented multi-agent system using virtual energy prices, levels of renewable energy in the real-time production mix, and historical price information, to achieve a shifting of loads to periods with a high production of renewable energy. Evaluations in our smart grid simulator for three scenarios show that the designed algorithm is capable of improving the self consumption of renewable energy in a residential area and reducing the average and peak loads for externally supplied power

    Quantifying flexibility in EV charging as DR potential : analysis of two real-world data sets

    Get PDF
    The increasing adoption of electric vehicles (EVs) presents both challenges and opportunities for the power grid, especially for distribution system operators (DSOs). The demand represented by EVs can be significant, but on the other hand, sojourn times of EVs could be longer than the time required to charge their batteries to the desired level (e.g., to cover the next trip). The latter observation means that the electrical load from EVs is characterized by a certain level of flexibility, which could be exploited for example in demand response (DR) approaches (e.g., to balance generation from renewable energy sources). This paper analyzes two data sets, one from a charging-at-home field trial in Flanders (about 8.5k charging sessions) and another from a large-scale EV public charging pole deployment in The Netherlands (more than 1M sessions). We rigorously analyze the collected data and quantify aforementioned flexibility: (1) we characterize the EV charging behavior by clustering the arrival and departure time combinations, identifying three behaviors (charging near home, charging near work, and park to charge), (2) we fit statistical models for the sojourn time, and flexibility (i.e., non-charging idle time) for each type of observed behavior, and (3) quantify the the potential of DR exploitation as the maximal load that could be achieved by coordinating EV charging for a given time of day t, continuously until t vertical bar Delt
    corecore