
Supporting development and management of smart
office applications: a DYAMAND case study

Jelle Nelis1, Heleen Vandaele1, Matthias Strobbe1, Arnoud Koning2, Filip De Turck1 and Chris Develder1

1Ghent University - iMinds
Dept. of Information Technology - IBCN, Ghent, Belgium

Email: jelle.nelis@intec.ugent.be

2P&G
Brussels, Belgium

Email: koning.a@pg.com

Abstract—To realize the Internet of Things (IoT) vision, tools
are needed to ease the development and deployment of practical
applications. Several standard bodies, companies, and ad-hoc
consortia are proposing their own solution for inter-device com-
munication. In this context, DYnamic, Adaptive MAnagement of
Networks and Devices (DYAMAND) was presented in a previous
publication to solve the interoperability issues introduced by the
multitude of available technologies.

In this paper a DYAMAND case study is presented: in
cooperation with a large company, a monitoring application
was developed for flexible office spaces in order to reliably
reorganize an office environment and give real-time feedback on
the usage of meeting rooms. Three wireless sensor technologies
were investigated to be used in the pilot. The solution was
deployed in a "friendly user" setting at a research institute
(iMinds) prior to deployment at the large company’s premises.
Based on the findings of both installations, requirements for an
application platform supporting development and management
of smart (office) applications were listed. DYAMAND was used as
the basis of the implementation. Although the local management
of networked devices as provided by DYAMAND enables easier
development of intelligent applications, a number of remote
services discussed in this paper are needed to enable reliable
and up-to-date support (of new technologies).

Index Terms—Device Management, Device Discovery, Middle-
ware, Office Management, Deployment, Sensor technologies

I. INTRODUCTION

Our homes, offices, cars, and cities are increasingly be-
coming connected. Networked devices offer services (such as
printing, environmental sensing, location tracking, etc.) that
can interwork with and/or be controlled by others. Sensors
are installed everywhere to measure environmental conditions
as temperature, light intensity, user presence, location, and air
quality [1].

This trend has triggered new ways of working as employees
have become more and more time and place independent.
They can work at home, in satellite offices, even in their
cars in the future, and commute between different sites of the
same company or clients at external locations. For example,
at the headquarters of Procter & Gamble (P&G) in Belgium,
around 30% of the +/- 1600 employees work at home at least

once a week, 5 to 10% is travelling or in external meetings.
This results in an actual average occupancy rate of the offices
in Brussels of 60 to 70%. With an average facility cost of
e 10,000 per employee per year, the potential cost savings by
space reduction is significant. Furthermore, there is a positive
impact on the company’s carbon footprint by cutting down on
office space and trips to and from the office.

At the same time, employees often struggle to find a
working space adapted to their current needs: a place to make
phone calls without interrupting colleagues, quiet places to
focus on an individual task, meeting rooms, etc. In order
to reduce facility costs, improving employee satisfaction and
productivity, and increasing collaboration between employees,
offices should be transformed into flexible spaces. In such an
environment employees don’t have an own desk anymore, but
can choose a workplace according to their current task, such
as desks, phone booths, quiet zones, huddle rooms, meeting
rooms, etc. for different forms of teamwork, meetings, calls,
and trainings.

End users can take advantage of real-time information about
their workplace while facility managers need an aggregated
view on (the history of) the actual occupation of the different
spaces to make better and faster decisions with respect to the
office layout. Such applications should be flexible and open to
interface with different kinds of existing and future sensors,
devices and systems, it should be easily customizable to the
specific needs of a group of employees, and be cost and energy
efficient. Currently available solutions however are typically
closed and very expensive (the standard P&G room finder
solution has an associated equipment cost of $1200 to $2000
per huddle room) and lack integration with existing systems.

The development of such applications that combine infor-
mation from a broad range of devices and sensors in an in-
telligent way, is hindered by the current technology landscape
which is extremely scattered with different technologies or
standards prevailing in different application domains. Even in
the same ecosystem, interoperability is not straightforward as
the same standard can often be interpreted in a number of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55828315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

different ways, hindering their adoption [2].
In order to cope with different types of sensors and

communication protocols, DYnamic, Adaptive MAnagement
of Networks and Devices (DYAMAND) [3] was developed.
Originally, DYAMAND was designed to be deployed on a
single home gateway that could communicate with all devices
nearby, which is the case in a typical residential environment.
However, in large-scale office environments, this assumption
does not hold, and we extended DYAMAND given this new-
found knowledge.

In this paper, requirements for a general application plat-
form for supporting inter-domain and inter-technology appli-
cations are listed based on the experience gained deploying
a real-life office management application within P&G. Our
findings during deployment are documented in Section II and
lead to a number of requirements listed in Section III. These
requirements are used in Section IV to test a number of state-
of-the-art platforms that promise a (partial) solution to the
proposed problem.

Section V presents our solution based on DYAMAND, and
discusses its large-scale deployment. Section VI focuses on the
lessons learnt and presents the results of the pilot. Section VII
focuses on the current status and Section VIII discusses future
extensions of the solution.

II. FLEXIBLE OFFICES PILOT

Fig. 1. Overview of the Flexible Offices pilot space at P&G in Brussels,
Belgium.

In the spring of 2014 P&G in Belgium started a pilot
where an area of about 1,350 square meters of office space
(100 places) was redesigned (Figure 1).

To allow employees to easily find a free desk or meeting
room, and to monitor the usage of the flexible offices and
huddle rooms (non-reservable meeting rooms), a system was
needed that automatically and in real-time monitors and visu-
alises the occupancy of the different spaces.

In a first step, three different Commercial Off The Shelf
(COTS) sensor technologies were tested in terms of accuracy,
communication range, battery life, and Total Cost of Owner-
ship (TCO):

• EnOcean [4]: 868.3 MHz in Europe and 315 MHz out-
side of Europe, typically battery-less devices that harvest
energy using the environment (using light, temperature,
or pressure).

• Z-Wave [5]: sub-GHz range using a mesh network archi-
tecture.

• INSTEON [6]: dual-mesh network combining a sub-GHz
RF network with power line communication.

The tests were done in a number of different environments,
ranging from line-of-sight connection between sensor and
receiver to obstacle dense conditions.

The different technologies behaved similarly in terms of
communication range and accuracy of the sensor. However,
with respect to ease of use and ease of integration Z-Wave
proved to have some drawbacks: all devices must be physically
paired with the controller, batteries needed to be changed
during the two-week test, the protocol is proprietary, and a
license fee of $3,000 needs to be paid to get the appropri-
ate documentation (and possible additional costs for product
certification) [7]. An open-source library is available, based
on reverse engineering of the protocol [8], but this of course
imposes additional risks, e.g., with respect to the support
of future versions of the protocol. INSTEON proved to be
a promising technology, but was not ready for integration
in a complete system, as an INSTEON gateway (Hub) was
needed for which no documented interface was available. The
INSTEON Hub is mainly targeted at consumers that wish
to configure their home automation system rather than being
integrated in a bigger system. In the end, EnOcean was chosen
as the supporting technology. The purchase cost is a little
higher than for the others, but maintenance costs are much
lower as no batteries need to be replaced over time.

Room occupancy was detected by using two types of sensors
per room (a passive infrared (PIR) and a door contact). The
algorithm used is shown in Figure 2. A room always starts in
the NOT_OCCUPIED state, if motion is detected while the
door is closed, the room is automatically considered as occu-
pied. Between the OCCUPIED and NOT_OCCUPIED states,
there are buffer states that solve false positives like cleaning
staff entering the room (in case of MAYBE_OCCUPIED, if
no events arrive within tstart, go to OCCUPIED state) and
employees not moving for a certain amount of time (in case
of MAYBE_NOT_OCCUPIED, if no events arrive within tstop,
go to NOT_OCCUPIED state).

Fig. 2. Algorithm used to detect room occupancy

Next, a web application for visualising occupancy of meet-
ing rooms was developed. This application, shown in Figure 3,

allows employees to find free meeting space without having
to visit them and also provides real-time and continuous
occupancy information to facility managers (in contrast with
traditional methods where somebody counts occupancies man-
ually during a limited period). So it allows organizations to
understand the actual usage of their space and to make better
informed decisions about the required office space.

Fig. 3. Screenshot of the Flexible Offices web application.

III. REQUIREMENTS FOR SUPPORTING APPLICATION
PLATFORM

Based on the use case requirements and the initial deploy-
ment, a list of requirements for a general application platform
was assembled:

• Interoperability: Support for future technologies and de-
vice types without having to restart the complete system.

• Device abstraction: Abstraction of technology-specific
details of the used devices for the application (and thus
developer).

• Configuration: Configuration of an application should be
as simple and minimal as possible. Ideally, everything
should be done automatically once the devices are phys-
ically installed. Remote configuration should be favored
over local configuration since visiting the installation site
might be expensive.

• Remote monitoring & management: For a cost effective
follow up of deployed installations, real-time monitoring
and remote mangement are key. The status of all locally
installed devices should be available for inspection to
solve problems in a timely fashion without on-site in-
terventions.

IV. EVALUATION OF RELATED WORK

A technology scan of current state-of-the-art revealed dif-
ferent categories of solutions to the interoperability problem: a
first category involves platforms that introduce their very own
technology to solve the problem. Every single one of these
platforms claims that their technology will be the next big
thing. In this case, limiting ourselves to a single technology
hinders the adoption of new solutions in the long run.

A second category consists of platforms that focus on a
particular application domain and take the pragmatic approach
of supporting the dominating technologies in that application
domain. This limits developments costs and time to market for
their particular case.

The third category, however, is the most relevant for this
case study. There are a few platforms that claim to provide
an interoperability layer between applications and networked
devices, making the device technology transparent for the
applications. The three most promising platforms in this cat-
egory are: openHAB [9], OpenRemote [10] and Microsoft’s
HomeOS [11]. These platforms were subjected to a qualitative
analysis based on the requirements stated in Section III. The
test constituted the installation of the platform on a supported
host and enabling support for a supported technology that was
readily available at our lab (a door/window contact was used
as a common test case in all cases) all the while taking into
account the amount of configuration needed.

A. openHAB

Using openHAB [9], users are able to integrate different
home automation systems in one, single application. The user
is not limited by the provided use cases of manufacturers,
but can create his own use cases for his home automation
devices. OpenHAB is an open source solution, that is claimed
to be maintained by a big community. Users are not obliged
to choose one technology and stick with it, vendor lock-in is
avoided. A broad range of technologies and applications can
be integrated with openHAB.

The Getting Started guide [12] was sufficient to get started.
However, it took a significant amount of configuration to get
the platform in a working state.

The openHAB runtime is a set of OSGi bundles deployed on
an OSGi framework. To enable support for the EnOcean tech-
nology, the bundle for EnOcean was added to the project. In
the openHAB configuration file, the EnOcean bundle needed
to be configured, specifying the serial port that corresponds
to the EnOcean USB stick. This is not very user-friendly nor
robust as without additional OS configuration, the serial port
assigned to a particular USB device can change over time
(e.g., due to power outages). This leads to either extra OS
configuration or on-site visits to do platform configuration.

After having configured EnOcean support in openHAB, it
became apparent that although EnOcean device events are
detected (printed in the openHAB log file), the detected
devices still need to be configured manually. The user must
configure the Items configuration file, defining all devices that
the system should listen to, specifying technology-specific
details such as the ID and type of the sensors together with
the data they can send.

After elaborate manual configuration, everything worked as
promised (i.e., the sensor information could be visualized in
a user interface1).

OpenHAB does not provide any type of automatic device
discovery. It requires the end user to manually configure ev-
erything from technology and device configuration (by either
entering static IP addresses on which devices are reachable,
USB ports, or other location information) to the actual user
interface (and only provides a text editor tool to check syntax).

1The user interface requires another configuration file – the site map – to
be filled out.

B. OpenRemote

OpenRemote consists of multiple components. The
OpenRemote Controller manages runtime integration between
devices and is deployed locally on one of the supported
platforms (in this case a Ubuntu laptop). The OpenRemote
Designer is a cloud-based tool to create the necessary config-
uration and design the user interfaces used by the web console
or smartphone application.

OpenRemote also supports EnOcean. The same scenario as
with openHAB was repeated, trying to integrate an EnOcean
door/window contact with the OpenRemote platform.

To install the Controller, the Getting Started guide [13]
was used. Using the Designer, the manual configuration is
visualized in a user interface. However, the ID, type and
other information to define a new device or command are
still required. Not only the device details, some of which
needed to be looked up in technical specifications of EnOcean,
but also the serial port for the EnOcean USB stick and the
serial protocol and library that OpenRemote needs to use to
communicate with the serial device needed to be inserted via
the user interface. These details should not be specified by a
non-technical end user.

C. HomeOS

HomeOS does not claim EnOcean support, so Z-Wave was
chosen as the technology used in the test. Installation was
hindered by the fact that a number of different Getting Started
guides were available, the most recent of which [15] used
different names for HomeOS2 components. Installation of
HomeOS on a Windows 8.1 PC can be done in 2 ways, either
by downloading the release binaries or by getting the source
code and building the project. We chose the binaries. Next,
the Z-Wave USB stick was inserted into the Windows 8.1
PC and the Windows driver for the stick was automatically
installed. However, apparantly, an additional HomeOS driver
was needed. After some research, it became clear that one had
to send an e-mail to the Lab-of-Things team to get the source
code for the Z-Wave module.

Even though [11], dating 2012, already claims support
for different types of devices and technologies (Z-wave and
DLNA), it seems to be still in its infancy. We were not able
to integrate any device with the released HomeOS binaries.

V. REAL-LIFE DEPLOYMENT

Before installing the occupancy system, an assessment was
made on which platform to use for the real-life deployment.
Given the fact that configuration was the bulk of the overhead
in the iMinds deployment and the fact that the investigated
frameworks failed that initial test, DYAMAND was chosen
based on a number of advantages it offers.

The device model used by DYAMAND is flexible enough
to support every known & foreseeable technology. Physical

2HomeOS activity seemed to have slowed down since 2012, but the Lab
of Things project was started as a follow-up project to manage HomeOS
installations remotely.

devices are modelled by a root device that can contain embed-
ded devices corresponding to technology-specific functionality
offered by that device. Every device can contain services with
state variables modelling the state of that particular service
and commands that can be executed to change the associated
state.

The use of this device model enables applications to dy-
namically react on changes in the physical environment. In
DYAMAND’s eyes, USB is just another service discovery
protocol and as such, any plugin - in this case the EnOcean
plugin - can react on the fact that a particular USB device
comes online, removing the need to configure the USB serial
device as seen in the platforms discussed in Section IV.

Furthermore, the configuration needed for EnOcean sensors
(ID, type, supported functionality) also gets discovered auto-
matically once the DYAMAND EnOcean plugin receives the
first message of that particular sensor. This removes the need
for the EnOcean sensor configuration discussed in Section IV.

Additionally, generic service types, a motion sensor, a
door/window contact, etc., are provided by DYAMAND to
be used by applications. Technology-specific services can
be translated to these generic service types to enable usage
by applications, so applications are not forced to be aware
of low-level information, and can focus on their application
logic. It is, however, still possible to retrieve technology-
specific information about discovered devices if required by
the application. This provides the additional advantage that
once applications are installed in the field, new devices of the
same device type, but a new technology – that the application
was not aware of at the time of development – can be added
without any problems.

Before deploying the solution at P&G, it was first deployed
at the research partner’s (iMinds) premises for initial testing
and debugging. This enabled early discovery of potential
installation and configuration problems.

Figure 4 gives a schematic overview of the setup at iMinds.
The sensors communicate wirelessly with a DYAMAND in-
stance installed on a nearby BeagleBone Black (BBB) device
(a low cost Linux based development platform). The BBB
devices send all received data to the backend, which also hosts
the web application.

Since the office space is too large to cover with one single
gateway, a centralised backend is introduced to solve the
problem of not being able to communicate with every single
device in a certain building. All information gathered from
the sensors is sent by the local DYAMAND instances to
a dedicated backend that processes the sensor data, gathers
information from the meeting room reservation system and
combines both streams of data as input to the interface as
shown in Figure 3. Additionally, configuration information
about the location of sensors is transferred from the local
instance to the remote backend which means that logically
assigning a sensor to a meeting room does not require you to
be on-site.

At the end of the summer of 2014 the deployment of
EnOcean sensors at the pilot space at P&G started. A 4G router

Fig. 4. Overview of the deployment of sensors and DYAMAND for the
Flexible Offices pilot.

was used to communicate with the backend as the internal
P&G office network could not be used for the pilot.

As start of a remote configuration tool, a simple monitor-
ing application was deployed to monitor if the DYAMAND
instances are still alive. This tool will be expanded to allow
real remote configuration. DYAMAND is responsible for the
local management of all discovered devices, and will report the
status of these devices to the backend to enable more targeted
support and simplify the development of applications such as
the meeting room occupation visualizer as shown in 3.

VI. EXPERIENCES AND RESULTS

The system was installed in three phases. In a first phase,
INSTEON, Z-Wave and EnOcean sensors were installed at
P&G. As the system was not developed fully, it only saved the
collected sensor data locally. Sensor data was analysed offline,
which resulted in a reduction of 17% of the total available
space; additionally, a number of offices were transformed into
flexible offices where employees can use a desk for the day if
space is available.

When the system was fully developed, it was first installed
at iMinds, where all six meeting rooms were equipped with
both a motion sensor and a door contact. The meeting rooms
are scattered throughout the building, so due to the limited
range of the sensors, three gateways needed to be used to
cover all areas. Once the installation was finished, the web
application was tested by iMinds’s administrative staff during
a month. After interviewing the staff, it became apparent that
they mainly used it whenever someone requested a meeting
room to be reserved. If they saw all meeting rooms were
reserved (which is fairly common), they checked the web
application to know whether or not the meeting room was
actually being used. It became clear that employees either
did not cancel their reservations if meetings got cancelled or
reserved a meeting room longer than necessary. Using the web
application, the administrative staff reminded employees to
either start their meeting or cancel their reservation resulting in
a more efficiently used building. During the month-long test,
administrative staff reported downtime of the system twice,
which was solve both times within half an hour. The iMinds

installation only used the collected data to present the real-time
view as shown in Figure 3, no historical data was analysed.

After the iMinds installation, the system was installed in
P&G’s offices in Strombeek-Bever. This installation encom-
passed two offices, a flexible office and a traditional office.

Fig. 5. Total sensor events per hour.

Figure 5 shows the amount of events DYAMAND sent to
the backend per hour. There is a clear daily pattern that can
be seen. This is to be expected since the sensors will detect
more movement during work hours than at night. It is also
obvious that there is a minimal number of events that are sent.
This can be explained by the fact that the sensors send their
data periodically even when it has not changed. Obviously,
these events should not propagate beyond the local network
in production, however, in this pilot we wanted to capture
all possible events for future development efforts. There is
a gap where no events where received (November 26–28),
after some analysis, 4G connectivity appeared to be the culprit.
Re-establishing the 4G connection solved the problem. This
shows that the system as such (sensors plus gateway running
DYAMAND) run stable during the complete pilot.

When analysing the sensor data using the algorithm speci-
fied in Figure 2, a number of interesting observations can be
made. First of all, weekends and nights correctly get classified
as NOT_OCCUPIED, which acts as a simple sanity check for
the algorithm. The flexible office got used starting from 7:30
AM to 7:00 PM consistently throughout the pilot, while the
traditional office was only used from 9:00 AM until 18:00 PM
with a great variety between days, i.e. a number of days, the
office was only used for an odd hour or less that day. If we
look at the total occupation for both offices, it is abundantly
clear that the concept of a flexible office is beneficial for the
efficiency of use of office space. When we average out the
total occupation rate of both offices, the flexible office is used
for approximately 5 hours a day while the traditional office
is only used for approximately 1 hour a day. This is largely
due to the fact that the traditional office was not used at all
a number of days during the pilot. If we discard the days the

traditional office was used less than 1 hour, the average usage
rises to approximately 4 hours of usage which still is lower
than the flexible office.

These findings can be valuable input for facility managers
to help them efficiently use the scarce resources they have
available.

VII. CONCLUSION

In this paper the deployment of an interoperability plat-
form (DYAMAND) to support a meeting room occupation
management system was discussed. The hands-on evaluation
of similar platforms was performed by installing and enabling
support for a single wireless sensor technology supported by
both DYAMAND and the platform under test. In general, the
required end user configuration for the tested platforms was
daunting as technology-specific information was needed. This
way configuration and managment of sensors and device of a
variety of technologies becomes overly complex. DYAMAND,
however, is completely dynamic and discovers the capabilities
of each device at runtime, enabling simple and automated
configuration of sensors and appliances. Using DYAMAND,
application developers can take advantage of a number of
features:

• Device abstraction: The device model enables application
developers to focus on their application logic without
having to be aware of low-level technology-specific de-
tails to be able to communicate with networked devices.
This does, however, not mean that these details are com-
pletely hidden, applications that are interested in using
technology-specific information are still able to do so.

• Combination of different technologies in the same ap-
plication: Given the results shown in [3] (interoperabil-
ity) and here (deployability), application developers can
combine different technologies to better support their
application without having to duplicate development and
configuration effort for every supported technology. E.g.,
for the presented use case EnOcean could be used wher-
ever enough environmental light is available to power
the battery-less sensors in combination with any other
battery-powered sensor technology to cover the blind
spots.

• Support to update technology at runtime: Once an appli-
cation has been developed and deployed, a new – better –
technology might arise that provides functionality useful
for the application. DYAMAND allows that sensors and
devices can easily be replaced allowing already deployed
applications to benefit from new and better functionality
without extra development or deployment efforts for
the application developer. A DYAMAND component to
detect the new device has to be developed for its discovery
in the framework. From this point on, applications can
take advantage of all technology-specific functionality. If
the device supports functionality already defined in the
framework (such as motion sensing), a component trans-
lating the technology-specific device into generic services

is needed for full support. If, on the other hand, the device
is a completely new device, additionally, a new service
type should be defined for the framework to be able to
handle the new functionality. Once these components are
developed, all current and future installations can benefit
from this newly created support.

VIII. FUTURE WORK

During deployment it became clear that simply solving
interoperability issues on a local level (per installation) is not
sufficient. A number of remote services are needed to fully live
up to the expectations discussed in this paper. Examples are au-
tomatic addition of technology support based on local triggers
(e.g., USB stick inserted, new device type discovered, etc.)
and error statistics (enabling targeted development effort). Our
current research focuses on listing the remote services needed
to be able to remotely monitor and manage a heterogeneous
installed base, both in terms of gateway hardware and in terms
of heterogeneity in supported technologies across installations.
These services will be tested using a wide variety (residential
versus office, small-scale versus large-scale) of installations.

ACKNOWLEDGEMENT

This work is supported by EIT ICT Labs via the project Flexible
Spaces Service.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[3] J. Nelis, T. Verschueren, D. Verslype, and C. Develder, “DYAMAND:
DYnamic, Adaptive MAnagement of Networks and Devices,” in Local
Computer Networks (LCN), 2012 IEEE 37th Conference on, Oct 2012,
pp. 192–195.

[4] EnOcean Technology – Energy Harvesting Wireless, EnOcean GmbH, 7
2011.

[5] Z-Wave Alliance. (2014, Sep) About Z-Wave technology. [Online].
Available: http://www.z-wavealliance.org/technology

[6] WHITEPAPER: The Details, INSTEON, 2013.
[7] Z-Wave Alliance. (2014, Sep) Z-Wave for developers and OEMs:

How to get started. [Online]. Available: http://www.z-wavealliance.org/
z-wave-for-developers-oems

[8] open-zwave. (2014, Sep) An open-source interface to Z-Wave networks.
[Online]. Available: https://code.google.com/p/open-zwave/

[9] openHAB UG. (2014, Sep) openHAB, empowering the smart home.
[Online]. Available: http://www.openhab.org/features.html

[10] OpenRemote Inc. (2014, Sep) OpenRemote, open source automation
platform. [Online]. Available: http://http://www.openremote.org/display/
HOME/OpenRemote

[11] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An operating system for the home,” in NSDI. USENIX, April
2012.

[12] openHAB UG. (2014, Sep) openHAB, getting started. [Online].
Available: http://www.openhab.org/gettingstarted.html

[13] OpenRemote Inc. (2014, Sep) OpenRemote documentation. [On-
line]. Available: http://www.openremote.org/display/docs/OpenRemote+
Documentation

[14] Microsoft. (2014, Sep) HomeOS project description. [Online]. Available:
http://homeos.codeplex.com/

[15] ——. (2014, Sep) Lab of Things, getting started guide.
[Online]. Available: https://labofthings.codeplex.com/wikipage?title=
Getting%20Started%20with%20Lab%20of%20Things

