22 research outputs found

    High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    Get PDF
    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens

    Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    Get PDF
    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements for nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet

    Muscle Hypertrophy in Prepubescent Tennis Players: A Segmentation MRI Study

    Get PDF
    PURPOSE: To asses if tennis at prepubertal age elicits the hypertrophy of dominant arm muscles. METHODS: The volume of the muscles of both arms was determined using magnetic resonance imaging (MRI) in 7 male prepubertal tennis players (TP) and 7 non-active control subjects (CG) (mean age 11.0 ± 0.8 years, Tanner 1-2). RESULTS: TP had 13% greater total muscle volume in the dominant than in the contralateral arm. The magnitude of inter-arm asymmetry was greater in TP than in CG (13 vs 3%, P<0.001). The dominant arm of TP was 16% greater than the dominant arm of CG (P<0.01), whilst non-dominant arms had similar total muscle volumes in both groups (P = 0.25), after accounting for height as covariate. In TP, dominant deltoid (11%), forearm supinator (55%) and forearm flexors (21%) and extensors (25%) were hypertrophied compared to the contralateral arm (P<0.05). In CG, the dominant supinator muscle was bigger than its contralateral homonimous (63%, P<0.05). CONCLUSIONS: Tennis at prepubertal age is associated with marked hypertrophy of the dominant arm, leading to a marked level of asymmetry (+13%), much greater than observed in non-active controls (+3%). Therefore, tennis particpation at prepubertal age is associated with increased muscle volumes in dominant compared to the non-dominant arm, likely due to selectively hypertrophy of the loaded muscles

    Study of the aerosol particle filtration efficiency of fabrics used to manufacture non-medical face masks in Lithuania

    No full text
    The global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proved to be a challenge for public health. The high demand of medical masks worldwide during the pandemic has led to a critical situation for decision-makers regarding high-quality mask supply. For this period, the World Health Organization has suggested the use of non-medical face masks (also known as ‘community’ masks) in public places to reduce the airborne spread of SARS-CoV-2. In this study, the filtration efficiency of various fabrics widely used in community masks was determined based on two main mask filtering properties: filtration efficiency (FE) and pressure drop (ΔP) according to the recommendations of the CEN Workshop Agreement (CWA) 17553:2020. The combination of FE and ΔP parameters must be considered in order to select suitable materials for public masks. The filtration efficiencies for various fabrics ranged from 6 to 100%. It was found that the composite materials have the highest FE equivalent to the requirements of a medical mask (FE &gt; 95%), that is confirmed by high-quality parameters 16–30 kPa–1. The study found that fabrics of natural fibres (100% cotton) have a higher FE with Ag coating (18–40% before and 29–40% after coating) in the 0.54–1.50 μm particle size range
    corecore