174 research outputs found

    Quality Control of Ionizing Radiation in Radiotherapy

    Get PDF
    This work includes the results of our research on the measurement of the dose delivered by an external beam in radiotherapy. The use of scintillating fibers in high-energy experiments produced rapid and reliable results and allows new dosimeters to be built and extends their use to measure the dose of an external beam of electrons, photons, and hadrons in radiotherapy.The chapter starts from the description of the radiation used in radiotherapy, presents the new approaches and then the tools used to perform the quality control of therapeutic beams, and finally shows the characteristics and differences compared to the traditional quality controls by using our results on the scintillating fibers used as a dosimeter. Some care should be taken into account during the collection and processing of data, for the treatment of some systematic errors in the method. In this chapter, we describe the procedure to be followed

    Modeling Radiotherapy Induced Normal Tissue Complications: An Overview beyond Phenomenological Models

    Get PDF
    An overview of radiotherapy (RT) induced normal tissue complication probability (NTCP) models is presented. NTCP models based on empirical and mechanistic approaches that describe a specific radiation induced late effect proposed over time for conventional RT are reviewed with particular emphasis on their basic assumptions and related mathematical translation and their weak and strong points

    Modelling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case

    Get PDF
    Background: Breast cancer is the most common cancer in women worldwide and is the second most common cause of cancer death in women. Electrochemotherapy (ECT) used in early-phase clinical trials for the treatment of primary breast cancer resulted in a not complete tumor necrosis in most cases. The present study was undertaken to analyze the feasibility to use ECT to treat patients with histologically proven unifocal ductal breast cancer. In particular, results of ECT treatment in a clinical case are compared with the ones of a simplified 3D dosimetric model. Methods: This clinical study was conducted with the pulse generator Cliniporator Vitae (IGEA, Carpi, Italy). ECT procedures were performed according to ESOPE standard operating procedures. Five single needle electrodes were used with one positioned in the center of the tumor, and the other four distributed around the nodule. Histological images of the resected tumor are compared with the maps of the electric field obtained with a simplified 3D model in Comsol Multiphysics v 4.3. Results: The results of the clinical case demonstrated a reduced efficacy of the ECT treatment described. The proposed simple numerical model of the breast tumor located in a low conductive tissue suggests that this is due to the reduced electric field induced inside the tumor with such 5 electrodes placement. However, where the electric field is predicted higher than the reversible electroporation threshold (E > 400 V/cm), also the histological images confirm the necrosis of the target with a good agreement between the modeled and clinical results. Conclusions: The results suggest the dependence of the effectiveness of the treatment on the careful placement of the electrodes. A detailed planned procedure for the tumor analysis after the treatment is also needed in order to better correlate the single electrode positions and the histological images. Simulation models could be used to identify better electrodes configuration in planning the experimental protocol for ECT treatment of breast tumors

    Implementation of a new cost efficacy method for blood irradiation using a non dedicated device

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>To implement a new cost efficacy internal Service for blood component irradiation, we carried out specific procedures and quality assurance reports using the linear accelerators (LINACs) of the Regina Elena Institute (IRE) Radiotherapy Department instead of a dedicated device.</p> <p>Methods</p> <p>The technical aspects, quality assurance and regulatory requirements of the internal procedure to set up a local irradiated blood bank have been defined. The LINACs of the IRE Radiotherapy Department were used to deliver a mean dose of 32 Gy and dose accuracy was checked with gafchromic film. The overall time/cost of this procedure was compared with the previous procedure, out-sourcing the irradiation of blood components.</p> <p>Results</p> <p>A total of 1996 blood component units were internally irradiated in the first year. Moreover, reducing the overall procedure time by a third. Overall cost/bag of external and internal procedures was approx. 66 € and 11 €, respectively. Thus the average saving of cost/bag was higher than 80%. The use of gafchromic films in all irradiated blood component bags allowed the accuracy of the dose delivered to blood to be checked.</p> <p>Conclusions</p> <p>By utilizing LINACs installed in the Radiotherapy Department it is possible to provide an internal blood component irradiation service, capitalizing on internal resources without any inconvenience/discomfort to patients undergoing radiotherapy and satisfying governmental regulatory requirements. The internal irradiation procedures has proven to be safe and feasible, and along with the significant cost/time reduction suggests that it is more advantageous than external procedures.</p

    Comparison of methods to determine accurate dose calibrator activity measurements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In nuclear medicine, liquid radiopharmaceuticals for diagnostic or therapeutic purposes are administered to patients by using various types of syringes with different volumes. The activity of each "dose" must be carefully measured and documented prior to administration using an activity calibrator.</p> <p>Methods</p> <p>Calibrator response is a function of the measurement geometry and, in particular, it depends on the syringe type and filling volume. To minimize the uncertainty associated with the measured activity of the syringe, it is necessary to calculate a calibration curve depending on filling volume for each syringe type. This curve can be obtained by fitting experimentally determined volume correction factors.</p> <p>Results</p> <p>A theoretical evaluation of volume correction factors for syringes is reported for three different experimental methods. The aim is to determine the most accurate experimental method among those considered, by examining the expression of uncertainty for the correction factor. This theoretical analysis was then tested experimentally.</p> <p>Conclusion</p> <p>The agreement between the experimental data obtained in the constant activity method and gravimetric method at constant specific activity and the small associated uncertainties show the accuracy of these two procedures; while the volumetric method at constant specific activity could lead to a wrong evaluation of the correction factors.</p

    Degradation rate of 5-fluorouracil in metastatic colorectal cancer. A new predictive outcome biomarker?

    Get PDF
    BACKGROUND: 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC). Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR) and genetic polymorphisms (MTHFR, TSER, DPYD) on survival. MATERIALS AND METHODS: Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome. RESULTS: 133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM) with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts); normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts); ultra-rapid metabolizer (UM) with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts). PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029). A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019). No significant associations between genes polymorphisms and outcomes or toxicities were observed. CONCLUSION: 5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes

    Recent Applications of Artificial Intelligence in Radiotherapy: Where We Are and Beyond

    Get PDF
    In recent decades, artificial intelligence (AI) tools have been applied in many medical fields, opening the possibility of finding novel solutions for managing very complex and multifactorial problems, such as those commonly encountered in radiotherapy (RT). We conducted a PubMed and Scopus search to identify the AI application field in RT limited to the last four years. In total, 1824 original papers were identified, and 921 were analyzed by considering the phase of the RT workflow according to the applied AI approaches. AI permits the processing of large quantities of information, data, and images stored in RT oncology information systems, a process that is not manageable for individuals or groups. AI allows the iterative application of complex tasks in large datasets (e.g., delineating normal tissues or finding optimal planning solutions) and might support the entire community working in the various sectors of RT, as summarized in this overview. AI-based tools are now on the roadmap for RT and have been applied to the entire workflow, mainly for segmentation, the generation of synthetic images, and outcome prediction. Several concerns were raised, including the need for harmonization while overcoming ethical, legal, and skill barriers

    CARE-compliant stereotactic radiotherapy of urothelial nodal metastases: A case report

    Get PDF
    The aim of the present study was to report the case of a 58-year-old male patient with ureteral carcinoma who underwent ureteroileostomy treatment. At 2 years following surgery, six lymph node metastases (LNMs) were detected in the patient's para-aortic and pelvic regions using F-18-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/CT. All LNMs were treated using stereotactic body radiotherapy (SBRT; 35-40 Gy/5 fractions). At 3 months after radiotherapy, F-18-FDG-PET/CT examination revealed a complete radiological and metabolic response of all targeted treatment sites in the patient. In the 2 years following radiotherapy, another three same-dose SBRT treatments were performed on single or multiple LNMs, which were all detected in the abdomen and pelvis of the patient. Overall, a total of 11 LNMs were targeted in the patient and all exhibited complete radiological and metabolic response following treatment. The only treatment side effect reported by the patient was a slight and temporary loss of appetite. In patients with lymph node oligometastases there are two options for radiotherapy: i) Irradiation focusing on LNMs alone; and ii) prophylactic irradiation of the entire lymph node area combined with a boost on macroscopic lesions. In the patient discussed in the present study, the choice of irradiation focusing on LNMs alone made it possible to postpone systemic therapies and instead use an optimally tolerated treatment. The treatment outcome in this patient indicated that there was no radioresistance of urothelial LNMs

    Complete metabolic response after Partially Ablative Radiotherapy (PAR) for bulky retroperitoneal liposarcoma: A case report

    Get PDF
    : In the management of symptomatic inoperable retroperitoneal sarcomas (RPS), palliative radiotherapy (RT) is a potential treatment option. However, the efficacy of low doses used in palliative RT is limited in these radioresistant tumors. Therefore, exploring dose escalation strategies targeting specific regions of the tumor may enhance the therapeutic effect of RT in relieving or preventing symptoms. In this case report, we present the case of an 87-year-old patient with rapidly growing undifferentiated liposarcoma in the retroperitoneum, where surgical and systemic therapies were ruled out due to age and comorbidities. RT was administered using volumetric modulated arc therapy, delivering 20 Gy in 4 fractions twice daily to the macroscopic tumor and 40 Gy in 4 fractions twice daily (simultaneous integrated boost) to the central part of the tumor (Gross Tumor Volume minus 2 cm). An 18F-FDG-PET-CT scan performed after RT demonstrated a complete metabolic response throughout the entire tumor mass. Although the patient eventually succumbed to metastatic spread to the bone, liver, and lung after 9 months, no local disease progression or pain/obstructive symptoms were observed. This case highlights the technical and clinical feasibility of delivering ablative doses of RT to the central region of the tumor and suggests the potential for achieving a complete metabolic response and durable tumor control
    • …
    corecore