603 research outputs found

    Interferon-Îł Stimulates Monocyte Chemotactic Protein-1 Expression by Monocytes

    Get PDF
    Monocyte chemotactic protein (MCP-1) is a specific monocyte chemoattractant and activating factor produced by both immune cells (mononuclear phagocytes and lymphocytes) and non-immune cells (parenchymal and stromal cells). In order to define the conditions under which human monocytes express MCP-1, monocytes were exposed to IFN-Îł, IL- lÎČ, TNF-α, IL-4 or PHA under serum free conditions. There was no significant MCP-1 production by monocytes following exposure to IL-lÎČ, TNF-α or IL-4. In contrast, stimulation with IFN-Îł resulted in a dose dependent increase in MCP-1 protein and mRNA expression. Simultaneous stimulation with IFN-Îł and IL-1ÎČ or TNF-α resulted in no further increase in MCP-1 production. It is concluded that IFN-Îł, primarily a product of TH1 T lymphocytes, stimulates the expression of MCP-1 by monocytes

    Cell‐to‐cell and cell‐to‐matrix interactions mediate chemokine expression: an important component of the inflammatory lesion

    Full text link
    Although many studies have characterized soluble factors that stimulate or inhibit chemokine secretion, in this review we focus on the event of cellular adhesion as a novel mechanism for stimulating chemokine expression. Recent work has demonstrated chemokine expression following cell‐to‐cell and cell‐to‐matrix adhesion. The specificity of this finding was demonstrated utilizing various techniques that illustrate that adhesion, and not a soluble stimulus, is in some cases responsible for initiating or augmenting chemokine expression. For example, co‐cultures of peripheral blood monocytes and endothelial cells secreted elevated levels of IL‐8 and MCP‐1 compared with either cell type alone. When co‐cultured in transwells, this effect was significantly attenuated. In other experiments, neutralizing monoclonal antibodies to various adhesion molecules inhibited chemokine expression. The effects of adhesion were not limited to leukocytes. Both immune and non‐immune cell types were evaluated as potential sources of adhesion‐mediated chemokine expression. Not suprisingly, expression of some chemokines was associated with adhesion, whereas others were not, supporting the notion that adhesion differentially signals chemokine secretion during the inflammatory response. We hypothesize that as a recruited leukocyte encounters different adhesion substrates such as endothelial cells, basement membrane, extracellular matrix, and fibroblasts, the expression of chemokines from both the leukocyte and the substrate may be initiated, inhibited, or augmented. Careful characterization of the contribution of adhesion to regulation of chemokine expression will provide insight into the pathogenesis of many human diseases where chemokines have a central role. J. Leukoc. Biol.62: 612–619; 1997.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142209/1/jlb0612.pd

    Endogenously produced urokinase amplifies tumor necrosis factor‐α secretion by THP‐1 mononuclear phagocytes

    Full text link
    This study examined the effects of endogenous urokinase (uPA) on lipopolysaccharide (LPS)‐stimulated tumor necrosis factor α (TNF‐α) secretion in THP‐1 mononuclear phagocytes. Anti‐uPA monoclonal antibody (mAb) suppressed LPS‐driven TNF‐α secretion by 61.6 ± 5.9% (P < .001), and PAI‐1, a uPA inhibitor, suppressed it to 53.1 ± 8.2% of the control value (P < .001). Up‐regulation of TNF‐α mRNA was suppressed in parallel with secreted TNF‐α protein. TNF‐α secretion was unaffected by depleting plasminogen or by aprotinin, a plasmin inhibitor. When endogenous uPA was displaced from the cell, exogenous high‐molecular‐weight (intact) uPA augmented LPS‐driven TNF‐α secretion. By contrast, a uPA fragment containing the catalytic domain was inhibitory, and the uPA receptor‐binding domain had no effect. We conclude that endogenous uPA amplifies TNF‐α neosynthesis of UPS‐stimulated THP‐1 mononuclear phagocytes. The effect requires intact uPA and is independent of plasmin activity. This represents a novel mechanism by which a mononuclear phagocyte–derived protease contributes to generating proinflammatory signals.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142208/1/jlb0302.pd

    Differential regulation of C-C chemokines during fibroblast-monocyte interactions: adhesion vs. inflammatory cytokine pathways.

    Get PDF
    The cell-to-cell interactions during chronic inflammatory diseases likely contribute to leukocyte accumulation leading to increased pathology and organ dysfunction. In particular, there is a paucity of information relating to the maintenance of chronic fibrotic diseases. Using a lung fibroblast line and enriched monocyte populations, we have investigated the activational events which contribute to the production of two C-C chemokines, macrophage inflammatory protein-1 alpha (MIP-1alpha) and monocyte chemoattractant protein-1 (MCP-1), during fibroblast-monocyte interactions. Neither the fibroblast cell line (16lu) nor isolated monocytes alone produced significant levels of MIP-1alpha or MCP-1. However, when isolated monocytes were layered onto 16 lu fibroblast monolayers a significant increase in MIP-1alpha and MCP-1 production was observed. The use of fixed cell populations indicated that the MIP-1alpha was derived from monocytes and MCP-1 from both cell populations. To examine the molecules which were required for chemokine production during the interaction, specific antibodies were used in the co-cultures. Blocking beta3-integrin interactions significantly inhibited MIP-1alpha production. In contrast, beta-integrin interactions had no effect on the MCP-1 production, while, neutralization of TNF significantly decreased MCP-1 production during the co-culture. These data indicate that fibroblast-monocyte interactions induce chemokine production through different mechanisms and a combination of these responses may contribute to the maintenance of the mononuclear cell accumulation during disease progression

    The Role of Fibrocytes in Sickle Cell Lung Disease

    Get PDF
    <div><h3>Background</h3><p>Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of sickle cell lung disease.</p> <h3>Methodology/Principal Findings</h3><p>Fibrocytes were quantified and characterized in subjects with sickle cell disease or healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4 ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung collagen content and improved lung compliance and histology.</p> <h3>Conclusions</h3><p>These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell lung disease.</p> </div

    The response to the COVID-19 pandemic: With hindsight what lessons can we learn?

    Get PDF
    The purpose of this paper is to put forward some evidence-based lessons that can be learned from how to respond to a Pandemic that relate to healthy living behaviours (HLB). A 4-step methodology was followed to conduct a narrative review of the literature and to present a professional practice vignette. The narrative review identified 8 lessons: 1) peer review; 2) historical perspectives; 3) investing in resilience and protection; 4) unintended consequences; 5) protecting physical activity; 6) school closures; 7) mental health; and 8) obesity. As in all probability there will be another Pandemic, it is important that the lessons learned over the last three years in relation to HLB are acted upon. Whilst there will not always be a consensus on what to emphasise, it is important that many evidence-based positions are presented. The authors of this paper recognise that this work is a starting point and that the lessons presented here will need to be revisited as new evidence becomes available

    Behavioral Adaptations of Female Mice on the International Space Station

    Get PDF
    Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation

    Angiogenesis in Interstitial Lung Diseases: a pathogenetic hallmark or a bystander?

    Get PDF
    The past ten years parallels have been drawn between the biology of cancer and pulmonary fibrosis. The unremitting recruitment and maintenance of the altered fibroblast phenotype with generation and proliferation of immortal myofibroblasts is reminiscent with the transformation of cancer cells. A hallmark of tumorigenesis is the production of new blood vessels to facilitate tumor growth and mediate organ-specific metastases. On the other hand several chronic fibroproliferative disorders including fibrotic lung diseases are associated with aberrant angiogenesis. Angiogenesis, the process of new blood vessel formation is under strict regulation determined by a dual, yet opposing balance of angiogenic and angiostatic factors that promote or inhibit neovascularization, respectively. While numerous studies have examined so far the interplay between aberrant vascular and matrix remodeling the relative role of angiogenesis in the initiation and/or progression of the fibrotic cascade still remains elusive and controversial. The current article reviews data concerning the pathogenetic role of angiogenesis in the most prevalent and studied members of ILD disease-group such as IIPs and sarcoidosis, presents some of the future perspectives and formulates questions for potential further research
    • 

    corecore