44 research outputs found

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Wind-Blown Bubbles around Evolved Stars

    Get PDF
    Most stars will experience episodes of substantial mass loss at some point in their lives. For very massive stars, mass loss dominates their evolution, although the mass loss rates are not known exactly, particularly once the star has left the main sequence. Direct observations of the stellar winds of massive stars can give information on the current mass-loss rates, while studies of the ring nebulae and HI shells that surround many Wolf-Rayet (WR) and luminous blue variable (LBV) stars provide information on the previous mass-loss history. The evolution of the most massive stars, (M > 25 solar masses), essentially follows the sequence O star to LBV or red supergiant (RSG) to WR star to supernova. For stars of mass less than 25 solar masses there is no final WR stage. During the main sequence and WR stages, the mass loss takes the form of highly supersonic stellar winds, which blow bubbles in the interstellar and circumstellar medium. In this way, the mechanical luminosity of the stellar wind is converted into kinetic energy of the swept-up ambient material, which is important for the dynamics of the interstellar medium. In this review article, analytic and numerical models are used to describe the hydrodynamics and energetics of wind-blown bubbles. A brief review of observations of bubbles is given, and the degree to which theory is supported by observations is discussed.Comment: To be published as a chapter in 'Diffuse Matter from Star Forming Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W. Harquist, J. M. Pittard and S. A. E. G. Falle. 22 pages, 12 figure

    Deployment model for slider-reefed ram-air parachutes

    No full text
    corecore