2,433 research outputs found

    Starburst-driven galactic winds: I. Energetics and intrinsic X-ray emission

    Full text link
    We have performed an extensive hydrodynamical parameter study of starburst-driven galactic winds, motivated by the latest observation data on the best-studied starburst galaxy M82. We study how the wind dynamics, morphology and X-ray emission depend on the host galaxy's ISM distribution, starburst star formation history and strength, and presence and distribution of mass-loading by dense clouds. We find that the soft X-ray emission from galactic winds comes from low filling factor (ff < 2 per cent) gas, which contains only a small fraction (f < 10 per cent) of the mass and energy of the wind, irrespective of whether the wind models are strongly mass-loaded or not. X-ray observations of galactic winds therefore do not directly probe the gas that contains the majority of the energy, mass or metal-enriched gas in the outflow. The soft X-ray emission comes from gas at a wide range different temperatures and densities. Estimates of the physical properties of the hot gas in starburst galaxies, based on fitting the standard simple spectral models to existing X-ray spectra, should therefore be treated with extreme suspicion. The majority of the thermal and kinetic energy of these winds is in a volume filling hot, T approx 10^7 K, component which is extremely difficult to probe observationally due to its low density and hence low emissivity. Most of the total energy is in the kinetic energy of this hot gas, a factor which must be taken into account when attempting to constrain wind energetics observationally. We also find that galactic winds are efficient at transporting large amounts of energy out of the host galaxy, in contrast to their inefficiency at transporting mass out of star-forming galaxies. (Abridged)Comment: Accepted for publication in MNRAS. Letter page size postscript available from http://adcam.pha.jhu.edu/~dks/dks_published.htm

    Early Time Evolution of High Energy Heavy Ion Collisions

    Get PDF
    We solve the Yang-Mills equations in the framework of the McLerran-Venugopalan model for small times tau after a collision of two nuclei. An analytic expansion around tau=0 leads to explicit results for the field strength and the energy momentum tensor of the gluon field at early times. We then discuss constraints for the energy density, pressure and flow of the plasma phase that emerges after thermalization of the gluon field.Comment: 4 pages, 1 figure; contribution to Quark Matter 2006; submitted to J. Phys.

    Comparing Chandra and SIRTF Observations for Obscured Starbursts and AGN at High Redshift

    Full text link
    Tracking the star formation rate to high redshifts requires knowledge of the contribution from both optically visible and obscured sources. The dusty, optically-obscured galaxies can be located by X-ray and infrared surveys. To establish criteria for selecting such sources based only on X-ray and infrared surveys, we determine the ratio of infrared to X-ray brightness that would be observed by SIRTF and Chandra for objects with the same spectral shapes as nearby starbursts if seen at high redshift. The parameter IR/X is defined as IR/X = (flux density observed in SIRTF MIPS 24 Ό\mum filter in mJy)/(total flux observed within 0.5-2.0 keV in units of 10^-16 ergs\s\cm^2). Based on observations of NGC 4038/39 (``The Antennae''), NGC 3690+IC 694 (Arp 299 or Mkn 171), M 82, and Arp 220, nine starburst regions are compared using mid-infrared spectra taken by the Infrared Space Observatory (ISO) and X-ray spectra obtained with Chandra . The IR/X are determined as they would appear for 1<z<3. The mean IR/X over this redshift range is 1.3 and is not a significant function of redshift or luminosity, indicating that SIRTF surveys reaching 0.4 mJy at 24 Ό\mum should detect the same starbursts as deep CXO surveys detect at a flux of 0.3x10^-16 ergs/s/cm^2. The lower bound of IR/X for starbursts is about 0.2, suggesting that objects with IR/X smaller than this have an AGN X-ray component in addition to the starburst. Values of IR/X for the obscured AGN within NGC 1068, the Circinus galaxy, and NGC 6240 are also determined for comparison although interpretation is complicated by the circumnuclear starbursts in these galaxies. Any sources found in surveys having IR/X>4 would not match any of the objects considered.Comment: accepted for publication in Ap

    Supergalactic winds driven by multiple superstar clusters

    Full text link
    We present two dimensional hydrodynamic calculations of free expanding supergalactic winds, taking into consideration strong radiative cooling. Our main premise is that supergalactic winds are powered by collections of superstar clusters. Every individual superstar cluster is a source of a high metallicity radiative supersonic outflow (paper I, 2003, ApJ, 590, 791). The interaction of winds from neighboring knots of star formation is shown to lead to a collection of stationary oblique shocks and crossing shocks, able to structure the general outflow into a network of dense and cold, kpc long filaments that originate near the base of the outflow. The shocks also lead to extended regions of diffuse soft X-ray emission and furthermore, to channel the outflow with a high degree of collimation into the intergalactic medium.Comment: 10 pages, 5 figures, Accepted for publication in The Astrophysical Journa

    Longitudinal Data Methods for Evaluating Genome-by-Epigenome Interactions in Families

    Get PDF
    Background: Longitudinal measurement is commonly employed in health research and provides numerous benefits for understanding disease and trait progression over time. More broadly, it allows for proper treatment of correlated responses within clusters. We evaluated 3 methods for analyzing genome-by-epigenome interactions with longitudinal outcomes from family data. Results: Linear mixed-effect models, generalized estimating equations, and quadratic inference functions were used to test a pharmacoepigenetic effect in 200 simulated posttreatment replicates. Adjustment for baseline outcome provided greater power and more accurate control of Type I error rates than computation of a pre-to-post change score. Conclusions: Comparison of all modeling approaches indicated a need for bias correction in marginal models and similar power for each method, with quadratic inference functions providing a minor decrement in power compared to generalized estimating equations and linear mixed-effects models

    Fertiliser Responses and Soil Test Calibrations for Grazed Pastures in Australia

    Get PDF
    On-farm management of fertiliser is of major economic significance to the Australian grazing industries, based on expenditure on fertiliser and higher farm productivity that fertiliser use supports. However the application of fertiliser has traditionally been an inexact and inefficient process (Peverill et al. 1999) and there is increasing pressure for nutrient losses from agriculture to be minimised. The improved adoption and application of tools like soil testing can make substantial improvements in nutrient use efficiency but interpretation needs to be based on the best available information. This paper reports on the collation of current and historical experimental data relating to pasture production - fertiliser response relationships (nitrogen, phosphorus, potassium and sulphur) for various pasture types, climatic zones and soils across Australia

    Mass-loaded spherical accretion flows

    Get PDF
    We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures

    The Optical Structure of the Starburst Galaxy M82. II. Nebular Properties of the Disk and Inner-Wind

    Full text link
    (Abridged) In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T~10^4 K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm-3, local small spatial-scale variations, and a fall-off in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favour the escape of individual cluster winds. Our findings imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low filling factors (<1pc, n_e>10^4 cm-3) to larger filling factor, less dense gas. The near-constant state of the ionization state of the ~10^4 K gas throughout the starburst can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. We have examined in more detail both the broad (FWHM 150-350 km/s) line component found in Paper I that we associated with emission from turbulent mixing layers on the gas clouds, and the discrete outflow channel identified within the inner wind. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and and width 35-50 pc and the walls maintain an approximately constant (but subsonic) expansion velocity of ~60 km/s. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height.Comment: 27 pages, 18 figures (13 in colour), accepted for publication in Ap

    Fertiliser Responses and Soil Test Calibrations for Grazed Pastures in Australia

    Get PDF
    On-farm management of fertiliser is of major economic significance to the Australian grazing industries, based on expenditure on fertiliser and higher farm productivity that fertiliser use supports. However the application of fertiliser has traditionally been an inexact and inefficient process (Peverill et al. 1999) and there is increasing pressure for nutrient losses from agriculture to be minimised. The improved adoption and application of tools like soil testing can make substantial improvements in nutrient use efficiency but interpretation needs to be based on the best available information. This paper reports on the collation of current and historical experimental data relating to pasture production - fertiliser response relationships (nitrogen, phosphorus, potassium and sulphur) for various pasture types, climatic zones and soils across Australia
    • 

    corecore