5 research outputs found

    Traumatic brain injury in the presence of Aβ pathology affects neuronal survival, glial activation and autophagy

    No full text
    Traumatic brain injury (TBI) presents a widespread health problem in the elderly population. In addition to the acute injury, epidemiological studies have observed an increased probability and earlier onset of dementias in the elderly following TBI. However, the underlying mechanisms of the connection between TBI and Alzheimer’s disease in the aged brain and potential exacerbating factors is still evolving. The aim of this study was to investigate cellular injury-induced processes in the presence of amyloid β (Aβ) pathology. For this purpose, a co-culture system of cortical stem-cell derived astrocytes, neurons and oligodendrocytes were exposed to Aβ42 protofibrils prior to a mechanically induced scratch injury. Cellular responses, including neurodegeneration, glial activation and autophagy was assessed by immunoblotting, immunocytochemistry, ELISA and transmission electron microscopy. Our results demonstrate that the combined burden of Aβ exposure and experimental TBI causes a decline in the number of neurons, the differential expression of the key astrocytic markers glial fibrillary acidic protein and S100 calcium-binding protein beta, mitochondrial alterations and prevents the upregulation of autophagy. Our study provides valuable information about the impact of TBI sustained in the presence of Aβ deposits and helps to advance the understanding of geriatric TBI on the cellular level

    Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology

    No full text
    Tau deposits in astrocytes are frequently found in Alzheimer's disease (AD) and other tauopathies. Since astrocytes do not express tau, the inclusions have been suggested to be of neuronal origin. However, the mechanisms behind their appearance and their relevance for disease progression remain unknown. Here we demonstrate, using a battery of experimental techniques that human astrocytes serve as an intermediator, promoting cell-to-cell spreading of pathological tau. Human astrocytes engulf and process, but fail to fully degrade dead neurons with tau pathology, as well as synthetic tau fibrils and tau aggregates isolated from AD brain tissue. Instead, the pathogenic tau is spread to nearby cells via secretion and tunneling nanotube mediated transfer. By performing co-culture experiments we could show that tau-containing astrocytes induce tau pathology in healthy human neurons directly. Furthermore, our results from a FRET based seeding assay, demonstrated that the tau proteoforms secreted by astrocytes have an exceptional seeding capacity, compared to the original tau species engulfed by the cells. Taken together, our study establishes a central role for astrocytes in mediating tau pathology, which could be of relevance for identifying novel treatment targets for AD and other tauopathies

    Characterization of the pathogenic α-Synuclein Variant V15A in Parkinson´s disease

    No full text
    Abstract Despite being a major component of Lewy bodies and Lewy neurites, pathogenic variants in the gene encoding alpha-Synuclein (α-Syn) are rare. To date, only four missense variants in the SNCA gene, encoding α-Syn have unequivocally been shown to be disease-causing. We here describe a Parkinson´s disease patient with early cognitive decline carrying an as yet not fully characterized variant in SNCA (NM_001146055: c.44T > C, p.V15A). We used different cellular models, including stably transfected neuroblastoma (SH-SY5Y) cell cultures, induced pluripotent stem cell (iPSC)-derived neuronal cultures, and generated a Drosophila model to elucidate the impact of the p.V15A variant on α-Syn function and aggregation properties compared to other known pathogenic variants. We demonstrate that p.V15A increased the aggregation potential of α-Syn and the levels of apoptotic markers, and impaired the mitochondrial network. Moreover, p.V15A affects the flying ability and survival of mutant flies. Thus, we provide supporting evidence for the pathogenicity of the p.V15A variant, suggesting its inclusion in genetic testing approaches

    Parkinson's Disease-Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance

    No full text
    Parkinson's disease (PD) is a neurodegenerative, progressive disease without a cure. To prevent PD onset or at least limit neurodegeneration, a better understanding of the underlying cellular and molecular disease mechanisms is crucial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent one of the most common causes of familial PD. In addition, LRRK2 variants are risk factors for sporadic PD, making LRRK2 an attractive therapeutic target. Mutations in LRRK2 have been linked to impaired alpha-synuclein (alpha-syn) degradation in neurons. However, in which way pathogenic LRRK2 affects alpha-syn clearance by astrocytes, the major glial cell type of the brain, remains unclear. The impact of astrocytes on PD progression has received more attention and recent data indicate that astrocytes play a key role in alpha-syn-mediated pathology. In the present study, we aimed to compare the capacity of wild-type astrocytes and astrocytes carrying the PD-linked G2019S mutation in Lrrk2 to ingest and degrade fibrillary alpha-syn. For this purpose, we used two different astrocyte culture systems that were exposed to sonicated alpha-syn for 24 h and analyzed directly after the alpha-syn pulse or 6 days later. To elucidate the impact of LRRK2 on alpha-syn clearance, we performed various analyses, including complementary imaging, transmission electron microscopy, and proteomic approaches. Our results show that astrocytes carrying the G2019S mutation in Lrrk2 exhibit a decreased capacity to internalize and degrade fibrillar alpha-syn via the endo-lysosomal pathway. In addition, we demonstrate that the reduction of alpha-syn internalization in the Lrrk2 G2019S astrocytes is linked to annexin A2 (AnxA2) loss of function. Together, our findings reveal that astrocytic LRRK2 contributes to the clearance of extracellular alpha-syn aggregates through an AnxA2-dependent mechanism

    CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation

    No full text
    Presenilin 1 (PS1) is a central component of γ-secretase, an enzymatic complex involved in the generation of the amyloid-β (Aβ) peptide that deposits as plaques in the Alzheimer’s disease (AD) brain. The M146L mutation in the PS1 gene (PSEN1) leads to an autosomal dominant form of early-onset AD by promoting a relative increase in the generation of the more aggregation-prone Aβ42. This change is evident not only in the brain but also in peripheral cells of mutation carriers. In this study we used the CRISPR-Cas9 system from Streptococcus pyogenes to selectively disrupt the PSEN1M146L allele in human fibroblasts. A disruption of more than 50% of mutant alleles was observed in all CRISPR-Cas9-treated samples, resulting in reduced extracellular Aβ42/40 ratios. Fluorescence resonance energy transfer-based conformation and western blot analyses indicated that CRISPR-Cas9 treatment also affects the overall PS1 conformation and reduces PS1 levels. Moreover, our guide RNA did not lead to any detectable editing at the highest-ranking candidate off-target sites identified by ONE-seq and CIRCLE-seq. Overall, our data support the effectiveness of CRISPR-Cas9 in selectively targeting the PSEN1M146L allele and counteracting the AD-associated phenotype. We believe that this system could be developed into a therapeutic strategy for patients with this and other dominant mutations leading to early-onset AD.Title in Web of Science: CRISPR-Cas9 treatment partially restores amyloid-beta 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation</p
    corecore