8 research outputs found

    Fatigue during acute systemic inflammation is associated with reduced mental effort expenditure while task accuracy is preserved

    Get PDF
    BACKGROUNDEarlier work within the physical domain showed that acute inflammation changes motivational prioritization and effort allocation rather than physical abilities. It is currently unclear whether a similar motivational framework accounts for the mental fatigue and cognitive symptoms of acute sickness. Accordingly, this study aimed to assess the relationship between fatigue, cytokines and mental effort-based decision making during acute systemic inflammation.METHODSEighty-five participants (41 males; 18-30 years (M = 23.0, SD = 2.4)) performed a mental effort-based decision-making task before, 2 h after, and 5 h after intravenous administration of 1 ng/kg bacterial lipopolysaccharide (LPS) to induce systemic inflammation. Plasma concentrations of cytokines (interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)) and fatigue levels were assessed at similar timepoints. In the task, participants decided whether they wanted to perform (i.e., 'accepted') arithmetic calculations of varying difficulty (3 levels: easy, medium, hard) in order to obtain rewards (3 levels: 5, 6 or 7 points). Acceptance rates were analyzed using a binomial generalized estimated equation (GEE) approach with effort, reward and time as independent variables. Arithmetic performance was measured per effort level prior to the decisions and included as a covariate. Associations between acceptance rates, fatigue (self-reported) and cytokine concentration levels were analyzed using partial correlation analyses.RESULTSPlasma cytokine concentrations and fatigue were increased at 2 h post-LPS compared to baseline and 5 h post-LPS administration. Acceptance rates decreased for medium, but not for easy or hard effort levels at 2 h post-LPS versus baseline and 5 h post-LPS administration, irrespective of reward level. These reductions in acceptance rates occurred despite improved accuracy on the arithmetic calculations itself. Reduced acceptance rates for medium effort were associated with increased fatigue, but not with increased cytokine concentrations.CONCLUSIONFatigue during acute systemic inflammation is associated with alterations in mental effort allocation, similarly as observed previously for physical effort-based choice. Specifically, willingness to exert mental effort depended on effort and not reward information, while task accuracy was preserved. These results extend the motivational account of inflammation to the mental domain and suggest that inflammation may not necessarily affect domain-specific mental abilities, but rather affects domain-general effort-allocation processes.</p

    Neonatal jaundice in the healthy newborn:Are the guidelines conclusive?

    Get PDF
    Three cases are reported of term neonates with high serum total bilirubin levels without evident signs indicating hemolytic or other underlying disease. The three patients were treated with phototherapy and/or exchange transfusion. It is discussed that the current consensus guidelines are inconclusive with respect to 'success of phototherapy' and 'signs of underlying disease'. Recommendations are made to improve the practice guidelines.</p

    Neonatal jaundice in the healthy newborn:Are the guidelines conclusive?

    Get PDF
    Three cases are reported of term neonates with high serum total bilirubin levels without evident signs indicating hemolytic or other underlying disease. The three patients were treated with phototherapy and/or exchange transfusion. It is discussed that the current consensus guidelines are inconclusive with respect to 'success of phototherapy' and 'signs of underlying disease'. Recommendations are made to improve the practice guidelines.</p

    Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome

    Get PDF
    Item does not contain fulltextThe Koolen-de Vries syndrome (KdVS) is a multisystem syndrome with variable facial features caused by a 17q21.31 microdeletion or KANSL1 truncating variant. As the facial gestalt of KdVS has resemblance with the gestalt of the 22q11.2 deletion syndrome (22q11.2DS), we assessed whether our previously described hybrid quantitative facial phenotyping algorithm could distinguish between these two syndromes, and whether there is a facial difference between the molecular KdVS subtypes. We applied our algorithm to 2D photographs of 97 patients with KdVS (78 microdeletions, 19 truncating variants (likely) causing KdVS) and 48 patients with 22q11.2DS as well as age, gender and ethnicity matched controls with intellectual disability (n = 145). The facial gestalts of KdVS and 22q11.2DS were both recognisable through significant clustering by the hybrid model, yet different from one another (p = 7.5 × 10(-10) and p = 0.0052, respectively). Furthermore, the facial gestalts of KdVS caused by a 17q21.31 microdeletion and KANSL1 truncating variant (likely) causing KdVS were indistinguishable (p = 0.981 and p = 0.130). Further application to three patients with a variant of unknown significance in KANSL1 showed that these faces do not match KdVS. Our data highlight quantitative facial phenotyping not only as a powerful tool to distinguish syndromes with overlapping facial dysmorphisms but also to establish pathogenicity of variants of unknown clinical significance

    Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome

    Get PDF
    Item does not contain fulltextThe Koolen-de Vries syndrome (KdVS) is a multisystem syndrome with variable facial features caused by a 17q21.31 microdeletion or KANSL1 truncating variant. As the facial gestalt of KdVS has resemblance with the gestalt of the 22q11.2 deletion syndrome (22q11.2DS), we assessed whether our previously described hybrid quantitative facial phenotyping algorithm could distinguish between these two syndromes, and whether there is a facial difference between the molecular KdVS subtypes. We applied our algorithm to 2D photographs of 97 patients with KdVS (78 microdeletions, 19 truncating variants (likely) causing KdVS) and 48 patients with 22q11.2DS as well as age, gender and ethnicity matched controls with intellectual disability (n = 145). The facial gestalts of KdVS and 22q11.2DS were both recognisable through significant clustering by the hybrid model, yet different from one another (p = 7.5 × 10(-10) and p = 0.0052, respectively). Furthermore, the facial gestalts of KdVS caused by a 17q21.31 microdeletion and KANSL1 truncating variant (likely) causing KdVS were indistinguishable (p = 0.981 and p = 0.130). Further application to three patients with a variant of unknown significance in KANSL1 showed that these faces do not match KdVS. Our data highlight quantitative facial phenotyping not only as a powerful tool to distinguish syndromes with overlapping facial dysmorphisms but also to establish pathogenicity of variants of unknown clinical significance

    Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome

    No full text
    Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning
    corecore