726 research outputs found

    The Effects of Interfacial Properties on the Mechanical Behavior of Layered Aluminum Matrix Composites

    Get PDF
    Al/SiC-composites are not only ajfected by inelastic deformation processes in the metallic matrix but also by debonding occurring at the fiber-matrix-interface. Therefore a viscoplastic material law including damage evolution and growth, as well as a cohesive zone model for the interface, are integrated into a finite element technique. By this the influence of interfacial characteristics on the stress-strain behavior of a laminated Al/SiC-composite is ezramined

    Effect of Uniaxial Tensile Loading on the Stiffness of Two-Dimensional Woven SiC/SiC - Modeling and Numerical Simulation

    Get PDF
    The behavior of two-dimensional woven SiC/SiC ceramic matrix composites (CMC) is studied by numerical simulations based on the finite element method (FEM). Starting point of the investigations is amicromechanical model regarding a three-dimensional unit cell. Damage as well as fracture of the singlecomponents - fiber bundles and inter yarn matrix - are regarded from a statistical point of view usingWeibull distribution. Statements of the behavior of the whole composite are possible by building up amacrostructure. The purpose of the current study is set on the stifiness reduction of the 2Dw compositesubjected to tensile loading in one of the fiber directions. Because of the strong anisotropy of the dam-age a tensor approach is used considering the terms of the elasticity matrix, which are determined forincreasing load. Regarding the elasticity matrix the behavior of the composite for any loading situationcan be predicted after an arbitrary preloading in one of the fiber direction

    Jabêm-English dictionary

    Get PDF

    Evaluation of Kelvin probe force microscopy for imaging grain boundaries in chalcopyrite thin films

    Get PDF
    In view of the outstanding performance of polycrystalline thin film solar cells on the basis of Cu In,Ga Se2, the electrical activity at grain boundaries currently receives considerable attention. Recently, Kelvin probe force microscopy KPFM has been applied to characterize of the properties of individual grain boundaries, observing a drop in the surface potential in many cases. We present finite element simulations of the electrostatic forces to assess the experimental resolution of KPFM. Depending on the tip sample distance, the observed drop in the work function amounts to only a fraction of the real surface potential drop. The simulations are considered for different grain boundary models and consequences for the quantitative evaluation of experimental results are discusse

    Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme

    Get PDF
    We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the first independent cross-check of the NLO QCD corrections presented in the literature before. Our calculation relies on numerical integrations of Feynman integrals, stabilised with integration-by-parts and a Richardson extrapolation to the narrow width approximation. We present results for the total cross section as well as for the invariant Higgs-pair-mass distribution at the LHC, including for the first time a study of the uncertainty due to the scheme and scale choice for the top mass in the loops

    First karyological analysis of the endemic malagasy phantom gecko matoatoa brevipes (Squamata: Gekkonidae)

    Get PDF
    The genus Matoatoa includes two Malagasy endemic species, M. brevipes and M. spannringi. Due to their cryptic behaviour, the two species are known only from a handful of specimens and have been included in few molecular studies. Here we carried out a molecular barcoding analysis using a fragment of the mitochondrial NADH dehy-drogenase subunit 2 (ND2) and the first chromosomal analysis of M. brevipes. The molecular analysis confirmed the identity of the studied samples as M. brevipes. However, the level of genetic divergence (4% uncorrected p-distance) between our samples and other sequences of M. brevipes, suggests previously unrecognised diversity within the spe-cies. The karyotype of M. brevipes is composed of 2n = 34 chromosomes: the first pair is metacentric, while all the other pairs are telocentric and gradually decreasing in length (Arm Number, AN = 36). C-banding revealed little evidence of centromeric heterochromatin, while NOR-associated heterochromatin was found on the telomeres of a medi-um sized telocentric pair. No heteromorphic chromosome pairs were found in the karyotype of the species, suggesting that putative sex chromosomes are at an early stage of differentiation. Karyological comparisons with closely related species were performed with Christinus marmoratus, and representatives of the genera Phelsuma, Ebenavia, Paroedura and Uroplatus. Comparisons across genera suggest that chromosome diversification in this group of geckos probably occurred by means of chromosome fusions and inversions, leading to a reduction of the chromosome number and the formation of biarmed elements in different species

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Safety, Efficacy and Pharmacokinetics of AZD7442 (Tixagevimab/Cilgavimab) for Treatment of Mild-to-Moderate COVID-19: 15-Month Final Analysis of the TACKLE Trial

    Get PDF
    Introduction: In the phase 3 TACKLE study, outpatient treatment with AZD7442 (tixagevimab/cilgavimab) was well tolerated and significantly reduced progression to severe disease or death through day 29 in adults with mild-to-moderate coronavirus disease 2019 (COVID-19) at the primary analysis. Here, we report data from the final analysis of the TACKLE study, performed after approximately 15 months’ follow-up. Methods: Eligible participants were randomized 1:1 and dosed within 7 days of symptom onset with 600 mg intramuscular AZD7442 (n = 456; 300 mg tixagevimab/300 mg cilgavimab) or placebo (n = 454). Results: Severe COVID-19 or death through day 29 occurred in 4.4% and 8.8% of participants who received AZD7442 or placebo, a relative risk reduction (RRR) of 50.4% [95% confidence interval (CI) 14.4, 71.3; p = 0.0096]; among participants dosed within 5 days of symptom onset, the RRR was 66.9% (95% CI 31.1, 84.1; p = 0.002). Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 occurred in 5.0% of participants receiving AZD7442 versus 9.7% receiving placebo, an RRR of 49.2% (95% CI 14.7, 69.8; p = 0.009). Adverse events occurred in 55.5% and 55.9% of participants who received AZD7442 or placebo, respectively, and were mostly mild or moderate in severity. Serious adverse events occurred in 10.2% and 14.4% of participants who received AZD7442 or placebo, respectively, and deaths occurred in 1.8% of participants in both groups. Serum concentration–time profiles recorded over 457 days were similar for AZD7442, tixagevimab, and cilgavimab, and were consistent with the extended half-life reported for AZD7442 (approx. 90 days). Conclusions: AZD7442 reduced the risk of progression to severe COVID-19, hospitalization, and death, was well tolerated through 15 months, and exhibited predictable pharmacokinetics in outpatients with mild-to-moderate COVID-19. These data support the long-term safety of using long-acting monoclonal antibodies to treat COVID-19. Trial Registration: Clinicaltrials.gov, NCT04723394. (https://clinicaltrials.gov/study/NCT04723394
    corecore