22 research outputs found

    Luminescence spectra and kinetics of disordered solid solutions

    Get PDF
    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative” localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1−c)Sec and ZnSe(1−c)Tec solid solutions. Further, the experimental results are presented for the temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the measurements of the decay of the spectrally integrated luminescence intensity at long delay times are presented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence

    Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors

    Get PDF
    The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7+0.6−0.5 eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore