887 research outputs found
Gap solitons in superfluid boson-fermion mixtures
Using coupled equations for the bosonic and fermionic order parameters, we
construct families of gap solitons (GSs) in a nearly one-dimensional Bose-Fermi
mixture trapped in a periodic optical-lattice (OL) potential, the boson and
fermion components being in the states of the BEC and BCS superfluid,
respectively. Fundamental GSs are compact states trapped, essentially, in a
single cell of the lattice. Full families of such solutions are constructed in
the first two bandgaps of the OL-induced spectrum, by means of variational and
numerical methods, which are found to be in good agreement. The families
include both intra-gap and inter-gap solitons, with the chemical potentials of
the boson and fermion components falling in the same or different bandgaps,
respectively.Nonfundamental states, extended over several lattice cells, are
constructed too. The GSs are stable against strong perturbations.Comment: 9 pages, 14 figure
Effectively attractive Bose-Einstein condensates in a rotating toroidal trap
We examine an effectively attractive quasi-one-dimensional Bose-Einstein
condensate of atoms confined in a rotating toroidal trap, as the magnitude of
the coupling constant and the rotational frequency are varied. Using both a
variational mean-field approach, as well as a diagonalization technique, we
identify the phase diagram between a uniform and a localized state and we
describe the system in the two phases.Comment: 4 pages, 4 ps figures, RevTe
Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas
We have converted an ultracold Fermi gas of Li atoms into an ultracold
gas of Li molecules by adiabatic passage through a Feshbach resonance.
Approximately molecules in the least-bound, ,
vibrational level of the X singlet state are produced with an
efficiency of 50%. The molecules remain confined in an optical trap for times
of up to 1 s before we dissociate them by a reverse adiabatic sweep.Comment: Accepted for publication in Phys. Rev. Letter
Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film
thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT)
substrates. After initial pseudomorphic growth the films start to relieve their
strain partly by the formation of periodic nano-twins with twin planes
predominantly along the direction. Nano-twinning occurs already at the
initial stage of growth, albeit in a more moderate way. Pseudomorphic grains,
on the other hand, still grow up to a thickness of at least several tenths of
nanometers. The twinning is attributed to the symmetry lowering of the
epitaxially strained pseudo-tetragonal structure towards the relaxed
rhombohedral structure of bulk LCO. However, the unit-cell volume of the
pseudo-tetragonal structure is found to be nearly constant over a very large
range of t. Only films with t > 130 nm show a significant relaxation of the
lattice parameters towards values comparable to those of bulk LCO.Comment: 31 pages, 10 figure
Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)
A conceptual design for an infrared spectrometer capable of both low resolution (λ/Î-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120ÎŒm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources
A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions
To show a mechanism leading to the breakdown of a particle picture for the
multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high
dimensions, we investigate the corresponding 2- nonlinear Schr{\"o}dinger
equation (Gross-Pitaevskii equation) with use of a modified variational
principle. A molecule of two identical Gaussian wavepackets has two degrees of
freedom(DFs), the separation of center-of-masses and the wavepacket width.
Without the inter-component interaction(ICI) these DFs show independent regular
oscillations with the degenerate eigen-frequencies. The inclusion of ICI
strongly mixes these DFs, generating a fat mode that breaks a particle picture,
which however can be recovered by introducing a time-periodic ICI with zero
average. In case of the molecule of three wavepackets for a three-component
BEC, the increase of amplitude of ICI yields a transition from regular to
chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure
Glacial isostatic uplift of the European Alps
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that âŒ90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the RhĂŽne Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions
Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length
We consider, by means of the variational approximation (VA) and direct
numerical simulations of the Gross-Pitaevskii (GP) equation, the dynamics of 2D
and 3D condensates with a scattering length containing constant and
harmonically varying parts, which can be achieved with an ac magnetic field
tuned to the Feshbach resonance. For a rapid time modulation, we develop an
approach based on the direct averaging of the GP equation,without using the VA.
In the 2D case, both VA and direct simulations, as well as the averaging
method, reveal the existence of stable self-confined condensates without an
external trap, in agreement with qualitatively similar results recently
reported for spatial solitons in nonlinear optics. In the 3D case, the VA again
predicts the existence of a stable self-confined condensate without a trap. In
this case, direct simulations demonstrate that the stability is limited in
time, eventually switching into collapse, even though the constant part of the
scattering length is positive (but not too large). Thus a spatially uniform ac
magnetic field, resonantly tuned to control the scattering length, may play the
role of an effective trap confining the condensate, and sometimes causing its
collapse.Comment: 7 figure
Localization of solitons: linear response of the mean-field ground state to weak external potentials
Two aspects of bright matter-wave solitons in weak external potentials are
discussed. First, we briefly review recent results on the Anderson localization
of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402
(2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple
perturbation theory. Second, we calculate the linear response of the mean-field
soliton shape to a weak, but otherwise arbitrary external potential, with a
detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum
Optics and Photonics Section of the German Physical Society. V2: minor
changes, published versio
- âŠ