55 research outputs found

    Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility

    Get PDF
    While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through GΞ±12 and Fractalkine through GΞ±q. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis

    A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection

    Get PDF
    Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULbβ€² that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULbβ€²-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULbβ€² sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2RΞ³cnull-humanized mouse model. The UL133-UL138NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations

    NK cell compartment in patients with coronary heart disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viral and bacterial infections have been considered as a risk factor for Coronary Heart Disease (CHD). NK cells, as a first line of defense against those infections, may play a role in CHD development. Thus, the main aim of our study was to determine NK cell compartment in patients with CHD undergoing coronary artery by-pass grafting.</p> <p>Results</p> <p>Ninety three patients with CHD were included into the study; the control group consisted of 49 healthy volunteers. As compared to controls, CHD patients had lower NK cytotoxic activity. CHD group had also a decreased absolute number and percentage of total NK cells and CD3-CD56dim cytotoxic NK subset. In addition, we observed tendency toward lower percentage of the CD3-CD56bright regulatory NK subset and CD3-CD56+IFN-Ξ³+ cells in CHD patients.</p> <p>Conclusion</p> <p>These data indicate that CHD is associated with an impairment of NK cells compartment.</p

    Cross-Reactivity of Herpesvirus-Specific CD8 T Cell Lines Toward Allogeneic Class I MHC Molecules

    Get PDF
    Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-Ξ± production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-Ξ± production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection

    Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney

    Get PDF
    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase Ξ²1 subunit protein (Na/K-Ξ²1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-Ξ²1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA

    Human Cytomegalovirus Impairs the Function of Plasmacytoid Dendritic Cells in Lymphoid Organs

    Get PDF
    Human dendritic cells (DCs) are the main antigen presenting cells (APC) and can be divided into two main populations, myeloid and plasmacytoid DCs (pDCs), the latter being the main producers of Type I Interferon. The vast majority of pDCs can be found in lymphoid organs, where the main pool of all immune cells is located, but a minority of pDCs also circulate in peripheral blood. Human cytomegalovirus (HCMV) employs multiple mechanisms to evade the immune system. In this study, we could show that pDCs obtained from lymphoid organs (tonsils) (tpDCs) and from blood (bpDCs) are different subpopulations in humans. Interestingly, these populations react in opposite manner to HCMV-infection. TpDCs were fully permissive for HCMV. Their IFN-Ξ± production and the expression of costimulatory and adhesion molecules were altered after infection. In contrast, in bpDCs HCMV replication was abrogated and the cells were activated with increased IFN-Ξ± production and upregulation of MHC class I, costimulatory, and adhesion molecules. HCMV-infection of both, tpDCs and bpDCs, led to a decreased T cell stimulation, probably mediated through a soluble factor produced by HCMV-infected pDCs. We propose that the HCMV-mediated impairment of tpDCs is a newly discovered mechanism selectively targeting the host's major population of pDCs residing in lymphoid organs

    Seroprevalence of 13 common pathogens in a rapidly growing U.S. minority population: Mexican Americans from San Antonio, TX

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection risks vary among individuals and between populations. Here we present information on the seroprevalence of 13 common infectious agents in a San Antonio-based sample of Mexican Americans. Mexican Americans represent the largest and most rapidly growing minority population in the U.S., and they are also considered a health disparities population.</p> <p>Methods</p> <p>We analyzed 1227 individuals for antibody titer to <it>Chlamydophila pneumoniae, Helicobacter pylori, Toxoplasma gondii</it>, cytomegalovirus, Epstein-Barr virus, herpes simplex virus-1, herpes simplex virus-2 (HSV-2), human herpesvirus-6 (HHV-6), varicella zoster virus (VZV), adenovirus-36, hepatitis A virus, and influenza A and B. Seroprevalence was examined as a function of sex, age, household income, and education.</p> <p>Results</p> <p>Seroprevalence estimates ranged from 9% for <it>T. gondii</it> to 92% for VZV, and were similar in both sexes except for HSV-2, which was more prevalent in women. Many pathogens exhibited a significant seroprevalence change over the examined age range (15-94 years), with 7 pathogens increasing and HHV-6 decreasing with age. Socioeconomic status significantly correlated with serostatus for some pathogens.</p> <p>Conclusions</p> <p>Our findings demonstrate substantial seroprevalence rates of these common infections in this sample of Mexican Americans from San Antonio, Texas that suffers from high rates of chronic diseases including obesity and type-2 diabetes.</p

    Human Cytomegalovirus Induces TGF-Ξ²1 Activation in Renal Tubular Epithelial Cells after Epithelial-to-Mesenchymal Transition

    Get PDF
    Human cytomegalovirus (HCMV) infection is associated epidemiologically with poor outcome of renal allografts due to mechanisms which remain largely undefined. Transforming growth factor-Ξ²1 (TGF-Ξ²1), a potent fibrogenic cytokine, is more abundant in rejecting renal allografts that are infected with either HCMV or rat CMV as compared to uninfected, rejecting grafts. TGF-Ξ²1 induces renal fibrosis via epithelial-to-mesenchymal transition (EMT) of renal epithelial cells, a process by which epithelial cells acquire mesenchymal characteristics and a migratory phenotype, and secrete molecules associated with extracellular matrix deposition and remodeling. We report that human renal tubular epithelial cells infected in vitro with HCMV and exposed to TGF-Ξ²1 underwent morphologic and transcriptional changes of EMT, similar to uninfected cells. HCMV infected cells after EMT also activated extracellular latent TGF-Ξ²1 via induction of MMP-2. Renal epithelial cells transiently transfected with only the HCMV IE1 or IE2 open reading frames and stimulated to undergo EMT also induced TGF-Ξ²1 activation associated with MMP-2 production, suggesting a role for these viral gene products in MMP-2 production. Consistent with the function of these immediate early gene products, the antiviral agents ganciclovir and foscarnet did not inhibit TGF-Ξ²1 production after EMT by HCMV infected cells. These results indicate that HCMV infected renal tubular epithelial cells can undergo EMT after exposure to TGF-Ξ²1, similar to uninfected renal epithelial cells, but that HCMV infection by inducing active TGF-Ξ²1 may potentiate renal fibrosis. Our findings provide in vitro evidence for a pathogenic mechanism that could explain the clinical association between HCMV infection, TGF-Ξ²1, and adverse renal allograft outcome

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-Ξ³

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-Ξ³ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-Ξ³-responsive promoters. However, neither synthesis nor secretion of IFN-Ξ³ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity
    • …
    corecore