124 research outputs found

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Abundance, rarity and invasion debt among exotic species in a patchy ecosystem

    Get PDF
    Community assembly through species invasions is a long-term process, for which vital information regarding future trends can be contained in current patterns. Using comparative analyses of native and exotic plant assemblages from meadow patches on islands in British Columbia, Canada, we examined multiple lines of evidence for ‘invasion debt’, a latent expansion of exotic species populations. We show that: (1) short-dispersing species are underrepresented compared to their long-dispersing counterparts in exotic species only; (2) among species that are invasive elsewhere in North America, a greater proportion of long dispersers are common in the study area and a greater proportion of short dispersers are rare; and (3) time since arrival in the study region is positively related to number of occurrences in exotic species. In addition, we show that a suite of exotic species possesses the facility of rapid long-distance dispersal and ability to establish viable populations on even the most isolated and least disturbed patches. While some highly-dispersive exotic species can rapidly colonize new areas, short dispersers appear to exhibit invasion debt, with their potential distributions only being realized in the long term. Removing or even reducing populations of many rapid colonizers could be extremely difficult; however, for species exhibiting patterns most consistent with invasion debt, an opportunity exists for monitoring and removal to help reduce potential competition with native species

    Eft for DFT

    Get PDF
    These lectures give an overview of the ongoing application of effective field theory (EFT) and renormalization group (RG) concepts and methods to density functional theory (DFT), with special emphasis on the nuclear many-body problem.Comment: 57 pages, to appear in the proceedings of the ECT* school on "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Springer Lecture Notes in Physics; acknowledgment adde

    Toxicity of neem's oil, a potential biocide against the invasive mussel Limnoperna fortunei (Dunker 1857)

    Get PDF
    The golden mussel Limnoperna fortunei (Dunker 1857) is one of the most distributed Nuisance Invasive Species (NIS) in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm). Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus) were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 μl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.Facultad de Ciencias Naturales y Muse

    Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model after In Vivo Selection

    Get PDF
    Background: There is currently no effective AIDS vaccine, emphasizing the importance of developing alternative therapies. Recently, a patient was successfully transplanted with allogeneic, naturally resistant CCR5-negative (CCR5 delta 32) cells, setting the stage for transplantation of naturally resistant, or genetically modified stem cells as a viable therapy for AIDS. Hematopoietic stem cell (HSC) gene therapy using vectors that express various anti-HIV transgenes has also been attempted in clinical trials, but inefficient gene transfer in these studies has severely limited the potential of this approach. Here we evaluated HSC gene transfer of an anti-HIV vector in the pigtailed macaque (Macaca nemestrina) model, which closely models human transplantation. Methods and Findings: We used lentiviral vectors that inhibited both HIV-1 and simian immunodeficiency virus (SIV)/HIV-1 (SHIV) chimera virus infection, and also expressed a P140K mutant methylguanine methyltransferase (MGMT) transgene to select gene-modified cells by adding chemotherapy drugs. Following transplantation and MGMT-mediated selection we demonstrated transgene expression in over 7% of stem-cell derived lymphocytes. The high marking levels allowed us to demonstrate protection from SHIV in lymphocytes derived from gene-modified macaque long-term repopulating cells that expressed an HIV-1 fusion inhibitor. We observed a statistically significant 4-fold increase of gene-modified cells after challenge of lymphocytes from one macaque that received stem cells transduced with an anti-HIV vector (p<0.02, Student's t-test), but not in lymphocytes from a macaque that received a control vector. We also established a competitive repopulation assay in a second macaque for preclinical testing of promising anti-HIV vectors. The vectors we used were HIV-based and thus efficiently transduce human cells, and the transgenes we used target HIV-1 genes that are also in SHIV, so our findings can be rapidly translated to the clinic. Conclusions: Here we demonstrate the ability to select protected HSC-derived lymphocytes in vivo in a clinically relevant nonhuman primate model of HIV/SHIV infection. This approach can now be evaluated in human clinical trials in AIDS lymphoma patients. In this patient setting, chemotherapy would not only kill malignant cells, but would also increase the number of MGMTP140K-expressing HIV-resistant cells. This approach should allow for high levels of HIV-protected cells in AIDS patients to evaluate AIDS gene therapy

    Network Analysis Identifies ELF3 as a QTL for the Shade Avoidance Response in Arabidopsis

    Get PDF
    Quantitative Trait Loci (QTL) analyses in immortal populations are a powerful method for exploring the genetic mechanisms that control interactions of organisms with their environment. However, QTL analyses frequently do not culminate in the identification of a causal gene due to the large chromosomal regions often underlying QTLs. A reasonable approach to inform the process of causal gene identification is to incorporate additional genome-wide information, which is becoming increasingly accessible. In this work, we perform QTL analysis of the shade avoidance response in the Bayreuth-0 (Bay-0, CS954) x Shahdara (Sha, CS929) recombinant inbred line population of Arabidopsis. We take advantage of the complex pleiotropic nature of this trait to perform network analysis using co-expression, eQTL and functional classification from publicly available datasets to help us find good candidate genes for our strongest QTL, SAR2. This novel network analysis detected EARLY FLOWERING 3 (ELF3; AT2G25930) as the most likely candidate gene affecting the shade avoidance response in our population. Further genetic and transgenic experiments confirmed ELF3 as the causative gene for SAR2. The Bay-0 and Sha alleles of ELF3 differentially regulate developmental time and circadian clock period length in Arabidopsis, and the extent of this regulation is dependent on the light environment. This is the first time that ELF3 has been implicated in the shade avoidance response and that different natural alleles of this gene are shown to have phenotypic effects. In summary, we show that development of networks to inform candidate gene identification for QTLs is a promising technique that can significantly accelerate the process of QTL cloning

    Assessing the Value of Recreational Divers for Censusing Elasmobranchs

    Get PDF
    BACKGROUND: Around the world, researchers are using the observations and experiences of citizens to describe patterns in animal populations. This data is often collected via ongoing sampling or by synthesizing past experiences. Since elasmobranchs are relatively rare, obtaining data for broad-scale trend analysis requires high sampling effort. Elasmobranchs are also relatively large and conspicuous and therefore it may be possible to enlist recreational divers to collect data on their occurrence and relative abundance from daily dive activities. For this, however, a good understanding of the value of data collected by recreational divers is essential. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explore the value of recreational divers for censusing elasmobranchs using a diverse set of data sources. First, we use a simulation experiment to explore detection rates of the roving diver technique, used by recreational divers, across a range of fish densities and speeds. Next, using a field survey, we show that inexperienced recreational divers detect and count elasmobranchs as well as experienced recreational divers. Finally, we use semi-structured interviews of recreational dive instructors to demonstrate the value of their recollections in terms of effort and their descriptions of spatial and temporal distributions of sharks in Thailand. CONCLUSIONS/SIGNIFICANCE: Overall, this study provides initial ground-work for using recreational divers for monitoring elasmobranch populations. If used appropriately, citizen-collected data may provide additional information that can be used to complement more standardized surveys and to describe population trends across a range of spatial and temporal scales. Due to the non-extractive nature of this data, recreational divers may also provide important insight into the success of conservation initiatives, such as shark sanctuaries and no-take zones
    corecore