23,275 research outputs found
An HI survey of the Bootes Void. II. The Analysis
We discuss the results of a VLA HI survey of the Bootes void and compare the
distribution and HI properties of the void galaxies to those of galaxies found
in a survey of regions of mean cosmic density. The Bootes survey covers 1100
Mpc, or 1\% of the volume of the void and consists of 24 cubes of
typically 2 Mpc * 2 Mpc * 1280 km/s, centered on optically known galaxies.
Sixteen targets were detected in HI; 18 previously uncataloged objects were
discovered directly in HI. The control sample consists of 12 cubes centered on
IRAS selected galaxies with FIR luminosities similar to those of the Bootes
targets and located in regions of 1 to 2 times the cosmic mean density. In
addition to the 12 targets 29 companions were detected in HI. We find that the
number of galaxies within 1 Mpc of the targets is the same to within a factor
of two for void and control samples, and thus that the small scale clustering
of galaxies is the same in regions that differ by a factor of 6 in
density on larger scales. A dynamical analysis of the galaxies in the void
suggests that on scales of a few Mpc the galaxies are gravitationally bound,
forming interacting galaxy pairs, loose pairs and loose groups. One group is
compact enough to qualify as a Hickson compact group. The galaxies found in the
void are mostly late-type, gas rich systems. A careful scrutiny of their HI and
optical properties shows them to be very similar to field galaxies of the same
morphological type. This, combined with our finding that the small scale
clustering of the galaxies in the void is the same as in the field, suggests
that it is the near environment that mostly affects the evolution of galaxies.Comment: Latex file of abstract. The postscript version of the complete paper
(0.2 Mb in gzipped format) including all the figures can be retrieved from
http://www.astro.rug.nl:80/~secr/ To appear in the February 1996 issue of the
Astronomical Journa
The Geoff Egan Memorial Lecture 2011. Artefacts, art and artifice: reconsidering iconographic sources for archaeological objects in early modern Europe
A first systematic analysis of historic domestic material culture depicted in contemporaneous Western painting and prints, c.1400-1800. Drawing on an extensive data set, the paper proposes to methodologies and hermeneutics for historical analysis and archaeological correspondence
Well-posedness, energy and charge conservation for nonlinear wave equations in discrete space-time
We consider the problem of discretization for the U(1)-invariant nonlinear
wave equations in any dimension. We show that the classical finite-difference
scheme used by Strauss and Vazquez \cite{MR0503140} conserves the
positive-definite discrete analog of the energy if the grid ratio is , where and are the mesh sizes of the time and space
variables and is the spatial dimension. We also show that if the grid ratio
is , then there is the discrete analog of the charge which is
conserved.
We prove the existence and uniqueness of solutions to the discrete Cauchy
problem. We use the energy conservation to obtain the a priori bounds for
finite energy solutions, thus showing that the Strauss -- Vazquez
finite-difference scheme for the nonlinear Klein-Gordon equation with positive
nonlinear term in the Hamiltonian is conditionally stable.Comment: 10 page
A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging
A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA)
A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the
most general case, be fully anisotropic, i.e. one has to distinguish three
diffusion axes in a local, field-aligned frame. We reexamine the transformation
for the diffusion tensor from this local to a global frame, in which the Parker
transport equation for energetic particles is usually formulated and solved.
Particularly, we generalize the transformation formulas to allow for an
explicit choice of two principal local perpendicular diffusion axes. This
generalization includes the 'traditional' diffusion tensor in the special case
of isotropic perpendicular diffusion. For the local frame, we motivate the
choice of the Frenet-Serret trihedron which is related to the intrinsic
magnetic field geometry. We directly compare the old and the new tensor
elements for two heliospheric magnetic field configurations, namely the hybrid
Fisk and the Parker field. Subsequently, we examine the significance of the
different formulations for the diffusion tensor in a standard 3D model for the
modulation of galactic protons. For this we utilize a numerical code to
evaluate a system of stochastic differential equations equivalent to the Parker
transport equation and present the resulting modulated spectra. The computed
differential fluxes based on the new tensor formulation deviate from those
obtained with the 'traditional' one (only valid for isotropic perpendicular
diffusion) by up to 60% for energies below a few hundred MeV depending on
heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap
- …