2,827 research outputs found

    Pulsation of Spherically Symmetric Systems in General Relativity

    Full text link
    The pulsation equations for spherically symmetric black hole and soliton solutions are brought into a standard form. The formulae apply to a large class of field theoretical matter models and can easily be worked out for specific examples. The close relation to the energy principle in terms of the second variation of the Schwarzschild mass is also established. The use of the general expressions is illustrated for the Einstein-Yang-Mills and the Einstein-Skyrme system.Comment: 21 pages, latex, no figure

    A post-Keplerian parameter to test gravito-magnetic effects in binary pulsar systems

    Get PDF
    We study the pulsar timing, focusing on the time delay induced by the gravitational field of the binary systems. In particular, we study the gravito-magnetic correction to the Shapiro time delay in terms of Keplerian and post-Keplerian parameters, and we introduce a new post-Keplerian parameter which is related to the intrinsic angular momentum of the stars. Furthermore, we evaluate the magnitude of these effects for the binary pulsar systems known so far. The expected magnitude is indeed small, but the effect is important per se.Comment: 6 pages, RevTeX, 1 eps figure, accepted for publication in Physical Review D; references adde

    Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space

    Get PDF
    We present new soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. These solutions are described by N+1 independent parameters, and have N-1 gauge field degrees of freedom. We examine the space of solutions in detail for su(3) and su(4) solitons and black holes. If the magnitude of the cosmological constant is sufficiently large, we find solutions where all the gauge field functions have no zeros. These solutions are of particular interest because we anticipate that at least some of them will be linearly stable.Comment: 15 pages, 20 figures, minor changes, accepted for publication in Physical Review

    Kaluza-Klein models: can we construct a viable example?

    Full text link
    In Kaluza-Klein models, we investigate soliton solutions of Einstein equation. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and PPN parameters. We find that the solitonic parameter k should be very big: |k|\geq 2.3\times10^4. We define a soliton solution which corresponds to a point-like mass source. In this case the soliton parameter k=2, which is clearly contrary to this restriction. Similar problem with the observations takes place for static spherically symmetric perfect fluid with the dust-like equation of state in all dimensions. The common for both of these models is the same equations of state in our three dimensions and in the extra dimensions. All dimensions are treated at equal footing. To be in agreement with observations, it is necessary to break the symmetry between the external/our and internal spaces. It takes place for black strings which are particular examples of solitons with k\to \infty. For such k, black strings are in concordance with the observations. Moreover, we show that they are the only solitons which are at the same level of agreement with the observations as in general relativity. Black strings can be treated as perfect fluid with dust-like equation of state p_0=0 in the external/our space and very specific equation of state p_1=-(1/2)\epsilon in the internal space. The latter equation is due to negative tension in the extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this case we get the latter equation of state. We show that the black string equations of state satisfy the necessary condition of the internal space stabilization. Therefore, black strings are good candidates for a viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative tension for particles constituting these objects.Comment: 11 pages, Revtex4, no figures, appendix and references adde

    O(4) texture with a cosmological constant

    Full text link
    We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which co-move with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than one. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations.Comment: 25 pages, revtex, 6 eps figure

    Applications of the Gauss-Bonnet theorem to gravitational lensing

    Full text link
    In this geometrical approach to gravitational lensing theory, we apply the Gauss-Bonnet theorem to the optical metric of a lens, modelled as a static, spherically symmetric, perfect non-relativistic fluid, in the weak deflection limit. We find that the focusing of the light rays emerges here as a topological effect, and we introduce a new method to calculate the deflection angle from the Gaussian curvature of the optical metric. As examples, the Schwarzschild lens, the Plummer sphere and the singular isothermal sphere are discussed within this framework.Comment: 10 pages, 1 figure, IoP styl

    Consistent Group and Coset Reductions of the Bosonic String

    Full text link
    Dimensional reductions of pure Einstein gravity on cosets other than tori are inconsistent. The inclusion of specific additional scalar and p-form matter can change the situation. For example, a D-dimensional Einstein-Maxwell-dilaton system, with a specific dilaton coupling, is known to admit a consistent reduction on S^2= SU(2)/U(1), of a sort first envisaged by Pauli. We provide a new understanding, by showing how an S^3=SU(2) group-manifold reduction of (D+1)-dimensional Einstein gravity, of a type first indicated by DeWitt, can be broken into in two steps; a Kaluza-type reduction on U(1) followed by a Pauli-type coset reduction on S^2. More generally, we show that any D-dimensional theory that itself arises as a Kaluza U(1) reduction from (D+1) dimensions admits a consistent Pauli reduction on any coset of the form G/U(1). Extensions to the case G/H are given. Pauli coset reductions of the bosonic string on G= (G\times G)/G are believed to be consistent, and a consistency proof exists for S^3=SO(4)/SO(3). We examine these reductions, and arguments for consistency, in detail. The structures of the theories obtained instead by DeWitt-type group-manifold reductions of the bosonic string are also studied, allowing us to make contact with previous such work in which only singlet scalars are retained. Consistent truncations with two singlet scalars are possible. Intriguingly, despite the fact that these are not supersymmetric models, if the group manifold has dimension 3 or 25 they admit a superpotential formulation, and hence first-order equations yielding domain-wall solutions.Comment: Latex, 5 figures, 45 pages, minor correction

    Aspects of hairy black holes in spontaneously-broken Einstein-Yang-Mills systems: Stability analysis and Entropy considerations

    Get PDF
    We analyze (3+1)-dimensional black-hole space-times in spontaneously broken Yang-Mills gauge theories that have been recently presented as candidates for an evasion of the scalar-no-hair theorem. Although we show that in principle the conditions for the no-hair theorem do not apply to this case, however we prove that the `spirit' of the theorem is not violated, in the sense that there exist instabilities, in both the sphaleron and gravitational sectors. The instability analysis of the sphaleron sector, which was expected to be unstable for topological reasons, is performed by means of a variational method. As shown, there exist modes in this sector that are unstable against linear perturbations. Instabilities exist also in the gravitational sector. A method for counting the gravitational unstable modes, which utilizes a catastrophe-theoretic approach is presented. The r\^ole of the catastrophe functional is played by the mass functional of the black hole. The Higgs vacuum expectation value (v.e.v.) is used as a control parameter, having a critical value beyond which instabilities are turned on. The (stable) Schwarzschild solution is then understood from this point of view. The catastrophe-theory appproach facilitates enormously a universal stability study of non-Abelian black holes, which goes beyond linearized perturbations. Some elementary entropy considerations are also presented...Comment: Latex file, 50 pages, 2 figures (included as PS files at the end: plot1.ps, plot2.ps

    On Doppler tracking in cosmological spacetimes

    Get PDF
    We give a rigorous derivation of the general-relativistic formula for the two-way Doppler tracking of a spacecraft in Friedmann-Lemaitre-Robertson-Walker and in McVittie spacetimes. The leading order corrections of the so-determined acceleration to the Newtonian acceleration are due to special-relativistic effects and cosmological expansion. The latter, although linear in the Hubble constant, is negligible in typical applications within the Solar System.Comment: 10 pages, 1 figure. Journal versio
    • …
    corecore