122 research outputs found

    An introduction to orogenic andesites and crustal growth

    Get PDF
    This chapter provides an overview of the current state of research on orogenic andesites. While their importance as proxies to the evolution of the continental crust has long been recognized, andesite genesis has remained highly controversial with a broader consensus yet to be reached. The controversy is fuelled by the question of whether orogenic andesites are primary melts of slab and mantle materials, or instead derivative products of basaltic mantle melts that differentiate in the overlying crust. These hypotheses are addressed in three sections of the book devoted to slab–mantle processes, the complexities of melt differentiation at crustal levels, and models pertaining to arc crustal growth. We believe that cross-fertilization and discussion among seemingly opposite and irreconcilable hypotheses will smooth the pathway towards a holistic communal model of andesite petrogenesis

    Volatiles in subduction zone magmatism

    Get PDF
    The volatile cycle at subduction zones is key to the petrogenesis, transport, storage and eruption of arc magmas. Volatiles control the flux of slab components into the mantle wedge, are responsible for melt generation through lowering the solidi of mantle materials, and influence the crystallizing phase assemblages in the overriding crust. Globally, magma ponding depths may be partially controlled by melt volatile contents. Volatiles also affect the rate and extent of degassing during magma storage and decompression, influence magma rheology and therefore control eruption style. The style of eruptions in turn determines the injection height of environmentally sensitive gases into the atmosphere and the impact of explosive arc volcanism. In this overview we summarize recent advances regarding the role of volatiles during slab dehydration, melt generation in the mantle wedge, magmatic evolution in the overriding crust, eruption triggering, and the release of some magmatic volatiles from volcanic edifices into the Earth's atmosphere

    The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis

    Get PDF
    Background: As previously shown, the sympathetic nervous system (SNS) shows proinflammatory activity during initiation of arthritis but is anti-inflammatory in established collagen-induced arthritis (CIA). Interleukin 10 (IL-10)-producing B cells suppress arthritis and are a potential target of the SNS because (1) B cells express functional β2-adrenoceptors (β2ARs) and (2) IL-10, at least in monocytes/macrophages, is regulated in a cAMP/PKA/CREB-dependent manner. Objective: To test the hypothesis that anti-inflammatory effects of the SNS in CIA are mediated by stimulating IL-10-producing anti-inflammatory B cells. Methods: Collagen-induced arthritis in DBA/1 mice, sympathectomy, adoptive B cell transfer, in vitro B cell culture, and assessment of B cell IL-10 production. Results and conclusion: Mice treated with B cells from SNS-intact mice showed less severe arthritis than mice treated with B cells from sympathectomised mice. This anti-inflammatory action of B cells from SNS-intact mice correlated with increased IL-10 produced by B cells, which was mediated by norepinephrine (NE), in a β2AR, PKA-dependent manner. However, an NE-mediated increase in IL-10 was seen only in B cells from immunised but not naive mice, explaining in part the anti-inflammatory properties of the SNS in the late phase of arthritis. Finally, animals treated with B cells isolated from immunised mice and activated in vitro in the presence of a β2AR stimulus showed a decrease in arthritis severity in comparison with controls, an approach that might be used for future cellular treatment strategies

    IL-7 receptor α expressing B cells act proinflammatory in collagen-induced arthritis and are inhibited by sympathetic neurotransmitters

    Get PDF
    Objectives: The sympathetic nervous system (SNS) as well as the interleukin (IL)-7/IL-7 receptor (IL-7R) system play a role in the pathogenesis of arthritis. However, the target cells and mechanisms involved are not fully resolved. The goal of this study was to determine if B cells are influenced by IL-7 and to investigate the possible interplay between the SNS and the IL-7/IL-7R system on B cells in arthritis. Methods: Collagen type II-induced arthritis (CIA) in DBA1 mice. ELISA to determine specific anti-CII antibodies. Fluorescence activated cell sorting (FACS) analysis to determine IL-7R+ cells and intracellular phosphorylated signal transducer and activator of transcription 5 (pSTAT5). Immunohistochemistry to show IL-7R+ B cells in rheumatoid arthritis (RA) and osteoarthritis (OA) synovial tissue. Results: IL-7 stimulated IL-7R+ mature B cells act proinflammatory (increased clinical score, increased anticollagen type II antibodies) after cell transfer in CIA. The sympathetic neurotransmitter norepinephrine abrogates this effect. Expression of IL-7Rα is increased when B cells are activated (anti-CD40 or lipopolysaccharide) in vitro and stimulating the IL-7R induces intracellular accumulation of pSTAT5. α- And β-adrenergic agonists show no influence on expression levels of IL-7R on activated B cells; however, intracellular IL-7R downstream signalling is abrogated via the β2-adreonceptor (β2AR) agonist terbutaline. IL-7R and β2AR are also expressed on B cells in synovial tissue from RA and OA patients. Conclusions: These data indicate that IL7R+ B cells have a proinflammatory role in arthritis which can be inhibited by the sympathetic neurotransmitter norepinephrine via inhibition of IL-7R signalling

    Constituent Quark Model Calculation for a possible J^P=0^-,T=0 Dibaryon

    Full text link
    There exists experimental evidence that a dibaryon resonance d' with quantum numbers J^P=0^-,T=0 and mass 2065 MeV could be the origin of the narrow peak in the (\pi^+ ,\pi^- ) double charge exchange cross--sections on nuclei. We investigate the six--quark system with these quantum--numbers within the constituent quark model, with linear confinement, effective one--gluon exchange at short range and chiral interactions between quarks (\pi and \sigma exchange). We classify all possible six quark states with J^P=0^-,T=0, and with N=1 and N=3 harmonic oscillator excitations, using different reduction chains. The six--quark Hamiltonian is diagonalized in the basis including the unique N=1 state and the 10 most important states from the N=3 shell. We find, that with most of the possible sets of parameters, the mass of such a "dibaryon" lies above the N(939)+N^\ast(1535) threshold. The only possibility to describe the supposed d'(2065) in the present context is to reduce the confinement strength to very small values, however at the expense of describing the negative parity resonances N^\ast. We also analyze the J^P=0^-,T=2,N=1 six--quark state.Comment: 42 pages, Latex, submitted to Nucl.Phys.

    Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy

    Get PDF
    Acute liver failure (ALF) in infancy and childhood is a life-threatening emergency. Few conditions are known to cause recurrent acute liver failure (RALF), and in about 50% of cases, the underlying molecular cause remains unresolved. Exome sequencing in five unrelated individuals with fever-dependent RALF revealed biallelic mutations in NBAS. Subsequent Sanger sequencing of NBAS in 15 additional unrelated individuals with RALF or ALF identified compound heterozygous mutations in an additional six individuals from five families. Immunoblot analysis of mutant fibroblasts showed reduced protein levels of NBAS and its proposed interaction partner p31, both involved in retrograde transport between endoplasmic reticulum and Golgi. We recommend NBAS analysis in individuals with acute infantile liver failure, especially if triggered by fever
    • …
    corecore