3,388 research outputs found
Rfx6 Maintains the Functional Identity of Adult Pancreatic β Cells.
SummaryIncreasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca2+ channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of “disallowed” genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans
Valence band photoemission from the GaN(0001) surface
A detailed investigation by one-step photoemission calculations of the
GaN(0001)-(1x1) surface in comparison with recent experiments is presented in
order to clarify its structural properties and electronic structure. The
discussion of normal and off-normal spectra reveals through the identified
surface states clear fingerprints for the applicability of a surface model
proposed by Smith et al. Especially the predicted metallic bonds are confirmed.
In the context of direct transitions the calculated spectra allow to determine
the valence band width and to argue in favor of one of two theoretical bulk
band structures. Furthermore a commonly used experimental method to fix the
valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR
Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts
The low efficiency of the electrocatalytic oxidation of water to O2 (oxygen evolution reaction-OER) is considered as one of the major roadblocks for the storage of electricity from renewable sources in form of molecular fuels like H2 or hydrocarbons. Especially in acidic environments, compatible with the powerful proton exchange membrane (PEM), an earth-abundant OER catalyst that combines high activity and high stability is still unknown. Current PEM-compatible OER catalysts still rely mostly on Ir and/or Ru as active components, which are both very scarce elements of the platinum group. Hence, the Ir and/or Ru amount in OER catalysts has to be strictly minimized. Unfortunately, the OER mechanism, which is the most powerful tool for OER catalyst optimization, still remains unclear. In this review, we first summarize the current state of our understanding of the OER mechanism on PEM-compatible heterogeneous electrocatalysts, before we compare and contrast that to the OER mechanism on homogenous catalysts. Thereafter, an overview over monometallic OER catalysts is provided to obtain insights into structure-function relations followed by a review of current material optimization concepts and support materials. Moreover, missing links required to complete the mechanistic picture as well as the most promising material optimization concepts are pointed out
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
of in- side-canopy conditions
ABSTRACT: This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates at the snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, and incoming global and longwave radiation. In the new second version (v2) we include parameterizations for the modification of the meteorological variables inside a canopy, and the interception and sublimation of snow from the trees. The canopy type is described by means of leaf area index, density and height. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation with adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE). The model is easily portable and adjustable, and runs particularly fast on any spreadsheet-capable computer platform
Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction
We measure the Hall conductivity of a two-dimensional electron gas formed at
a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron
resonance frequency by employing a highly sensitive Faraday rotation method
coupled with electrical gating of the sample to change the electron density. We
observe clear plateau-and step-like features in the Faraday rotation angle vs.
electron density and magnetic field (Landau-level filling factor), which are
the high frequency manifestation of quantum Hall plateaus - a signature of
topologically protected edge states. The results are compared to a recent
dynamical scaling theory.Comment: 18 pages, 3 figure
- …