4 research outputs found

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Protecting 30% of the planet for nature: costs, benefits and economic implications

    No full text
    The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. The current report, based on the work of over 100 economists/scientists, analyses the global economic implications of a 30% PA target for agriculture, forestry, fisheries, and the PA/nature sector itself. (OECMs were only defined by the CBD in 2018, too recently to economically model, but we include a qualitative treatment of them.) We carried out two analyses: a global financial one (concrete revenues and costs only); and a tropics- focused economic one (including non-monetary ecosystem service values), for multiple scenarios of how a 30% PA target might be implemented. Our financial analysis showed that expanding PAs to 30% would generate higher overall output (revenues) than non-expansion (an extra 64billion64 billion-454 billion per year by 2050). (Figure 1-2). In the economic analysis, only a partial assessment was possible, focusing on forests and mangroves. For those biomes alone, the 30% target had an avoided-loss value of 170170-534 billion per year by 2050, largely reflecting the benefit of avoiding the flooding, climate change, soil loss and coastal storm- surge damage that occur when natural vegetation is removed. The value for all biomes would be higher. Implementing the proposal would therefore make little initial difference to total (multi-sector) economic output, although a modest rise in gross output value is projected. The main immediate difference between expansion and non-expansion is therefore in broader economic/social values. Expansion outperforms non-expansion in mitigating the very large economic risks of climate change and biodiversity loss (Figure 5). The 30% target would also increase by 63%- 98% the area recognised as Indigenous Peoples’ and local communities’ land-based nature stewardship contribution (within appropriate rights and governance frameworks). Economic growth in the PA/nature sector (at 4-6%) was also many times faster than the 1% growth expected in competing sectors (Figure 3). Marine expansion restores growth to fisheries (after a shock) but non-expansion leads to a mid-term contraction (Figure 4). The annual investment needed for an expanded (30%) PA system is 103103 – 178 billion1. This figure includes 68billionfortheexistingsystem,ofwhichonly68 billion for the existing system, of which only 24.3 is currently spent. (Underfunded systems lose revenue, assets, carbon and biodiversity). Most of the investment need is in low- and middle-income countries (LMICs). These often have a competitive asset advantage in terms of natural areas, but they may need international support to capitalise on that opportunity. Otherwise, growing the PA sector could also entrench global economic inequalities. Benefits and costs also accrue to different stakeholders at smaller (e.g. local) scales, making welfare distribution a challenge that needs addressing

    Organismos modificados para el medio ambiente: historias de éxito y fracaso, y qué hemos aprendido de ellas

    Get PDF
    The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology.The work of our laboratories cited in this article was funded by grants of the Spanish Ministry of Education and Science, the European Union, and the Conservation Biology Program of the BBVA Foundation.Peer reviewe

    Organismos modificados para el medio ambiente: historias de éxito y fracaso, y qué hemos aprendido de ellas

    Get PDF
    The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology.The work of our laboratories cited in this article was funded by grants of the Spanish Ministry of Education and Science, the European Union, and the Conservation Biology Program of the BBVA Foundation.Peer reviewe
    corecore