15 research outputs found

    The competition between gravity and flow focusing in two-layered porous media

    Get PDF
    The gravitationally driven flow of a dense fluid within a two-layered porous media is examined experimentally and theoretically. We find that in systems with two horizontal layers of differing permeability a competition between gravity driven flow and flow focusing along high-permeability routes can lead to two distinct flow regimes. When the lower layer is more permeable than the upper layer, gravity acts along high-permeability pathways and the flow is enhanced in the lower layer. Alternatively, when the upper layer is more permeable than the lower layer, we find that for a sufficiently small input flux the flow is confined to the lower layer. However, above a critical flux fluid preferentially spreads horizontally within the upper layer before ultimately draining back down into the lower layer. This later regime, in which the fluid overrides the low-permeability lower layer, is important because it enhances the mixing of the two fluids. We show that the critical flux which separates these two regimes can be characterized by a simple power law. Finally, we briefly discuss the relevance of this work to the geological sequestration of carbon dioxide and other industrial and natural flows in porous media

    Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering.

    Get PDF
    Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue

    Theoretical investigation of a genetic switch for metabolic adaptation

    Get PDF
    Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic “on-off” switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate

    The competition between gravity and flow focusing in two-layered porous media

    Get PDF
    The gravitationally driven flow of a dense fluid within a two-layered porous media is examined experimentally and theoretically. We find that in systems with two horizontal layers of differing permeability a competition between gravity driven flow and flow focusing along high-permeability routes can lead to two distinct flow regimes. When the lower layer is more permeable than the upper layer, gravity acts along high-permeability pathways and the flow is enhanced in the lower layer. Alternatively, when the upper layer is more permeable than the lower layer, we find that for a sufficiently small input flux the flow is confined to the lower layer. However, above a critical flux fluid preferentially spreads horizontally within the upper layer before ultimately draining back down into the lower layer. This later regime, in which the fluid overrides the low-permeability lower layer, is important because it enhances the mixing of the two fluids. We show that the critical flux which separates these two regimes can be characterized by a simple power law. Finally, we briefly discuss the relevance of this work to the geological sequestration of carbon dioxide and other industrial and natural flows in porous media

    Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Get PDF
    The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought
    corecore