5,072 research outputs found

    Water Hauling and Girls' School Attendance Some New Evidence From Ghana

    Get PDF
    In large parts of the world, a lack of home tap water burdens households as the water must be brought to the house from outside, at great expense in terms of effort and time. This paper studies how such costs affect girls' schooling in Ghana, with an analysis based on four rounds of the Demographic and Health Surveys

    Pupil mobility, attainment and progress in secondary school

    Get PDF
    This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupils’ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed

    Measuring and modeling optical diffraction from subwavelength features

    Get PDF
    We describe a technique for studying scattering from subwavelength features. A simple scatterometer was developed to measure the scattering from the single-submicrometer, subwavelength features generated with a focused ion beam system. A model that can describe diffraction from subwavelength features with arbitrary profiles is also presented and shown to agree quite well with the experimental measurements. The model is used to demonstrate ways in which the aspect ratios of subwavelength ridges and trenches can be obtained from scattering data and how ridges can be distinguished from trenches over a wide range of aspect ratios. We show that some earlier results of studies on distinguishing pits from particles do not extend to low-aspect-ratio features

    Sabbath and Sunday Observance in the Early Church

    Get PDF

    Spin injection from the Heusler alloy Co_2MnGe into Al_0.1Ga_0.9As/GaAs heterostructures

    Full text link
    Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum steady-state spin polarization of approximately 13% at 2 K is measured in two types of heterostructures. The injected spin polarization at 2 K is calculated to be 27% based on a calibration of the spin detector using Hanle effect measurements. Although the dependence on electrical bias conditions is qualitatively similar to Fe-based spin injection devices of the same design, the spin polarization injected from Co_2MnGe decays more rapidly with increasing temperature.Comment: 8 pages, 4 figure

    Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq

    Get PDF
    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience

    Dual Bethe-Salpeter equation for the multi-orbital lattice susceptibility within dynamical mean-field theory

    Full text link
    Dynamical mean-field theory describes the impact of strong local correlation effects in many-electron systems. While the single-particle spectral function is directly obtained within the formalism, two-particle susceptibilities can also be obtained by solving the Bethe-Salpeter equation. The solution requires handling infinite matrices in Matsubara frequency space. This is commonly treated using a finite frequency cut-off, resulting in slow linear convergence. We show that decomposing the two-particle response in local and non-local contributions enables a reformulation of the Bethe-Salpeter equation inspired by the dual boson formalism. The re-formulation has a drastically improved cubic convergence with respect to the frequency cut-off, facilitating the calculation of susceptibilities in multi-orbital systems considerably. The dual Bethe-Salpeter equation uses the fully reducible vertex which is free from vertex divergences. We benchmark the approach on several systems including the spin susceptibility of strontium ruthenate Sr2_2RuO4_4, a strongly correlated Hund's metal with three active orbitals. We propose the dual Bethe-Salpeter equation as a new standard for calculating two-particle response within dynamical mean-field theory
    • …
    corecore