5,117 research outputs found
Double precision trajectory program /DPTRAJ 2.2C/
Four part program computes trajectory of space probe moving in solar system and subject to variety of forces
Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures
We present a complete description of spin injection and detection in
Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K.
Measurements of the steady-state spin polarization in the semiconductor
indicate three temperature regimes for spin transport and relaxation. At
temperatures below 70 K, spin-polarized electrons injected into quantum well
structures form excitons, and the spin polarization in the quantum well depends
strongly on the electrical bias conditions. At intermediate temperatures, the
spin polarization is determined primarily by the spin relaxation rate for free
electrons in the quantum well. This process is slow relative to the excitonic
spin relaxation rate at lower temperatures and is responsible for a broad
maximum in the spin polarization between 100 and 200 K. The spin injection
efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher
temperatures, although a steady-state spin polarization of at least 6 % is
observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let
The Dynamical Mean Field Theory phase space extension and critical properties of the finite temperature Mott transition
We consider the finite temperature metal-insulator transition in the half
filled paramagnetic Hubbard model on the infinite dimensional Bethe lattice. A
new method for calculating the Dynamical Mean Field Theory fixpoint surface in
the phase diagram is presented and shown to be free from the convergence
problems of standard forward recursion. The fixpoint equation is then analyzed
using dynamical systems methods. On the fixpoint surface the eigenspectra of
its Jacobian is used to characterize the hysteresis boundaries of the first
order transition line and its second order critical end point. The critical
point is shown to be a cusp catastrophe in the parameter space, opening a
pitchfork bifurcation along the first order transition line, while the
hysteresis boundaries are shown to be saddle-node bifurcations of two merging
fixpoints. Using Landau theory the properties of the critical end point is
determined and related to the critical eigenmode of the Jacobian. Our findings
provide new insights into basic properties of this intensively studied
transition.Comment: 11 pages, 12 figures, 1 tabl
On free evolution of self gravitating, spherically symmetric waves
We perform a numerical free evolution of a selfgravitating, spherically
symmetric scalar field satisfying the wave equation. The evolution equations
can be written in a very simple form and are symmetric hyperbolic in
Eddington-Finkelstein coordinates. The simplicity of the system allow to
display and deal with the typical gauge instability present in these
coordinates. The numerical evolution is performed with a standard method of
lines fourth order in space and time. The time algorithm is Runge-Kutta while
the space discrete derivative is symmetric (non-dissipative). The constraints
are preserved under evolution (within numerical errors) and we are able to
reproduce several known results.Comment: 15 pages, 15 figure
Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states caused by the disorder of amorphous metal oxide films. We start from presenting the results for amorphous (a) HfO<sub>2</sub>, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy (EPDS) measurements and theoretical calculations using density functional theory (DFT) shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO<sub>2</sub>. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modelling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO<sub>2</sub> and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO<sub>2</sub>, a-Al<sub>2</sub>O<sub>3</sub>, a-TiO<sub>2</sub>. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum (CBM) can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO<sub>2</sub> and a-SiO<sub>2</sub> weakens Hf(Si)-O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O<sup>2-</sup> ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions
Electron Spin Dynamics and Hyperfine Interactions in Fe/Al_0.1Ga_0.9As/GaAs Spin Injection Heterostructures
We have studied hyperfine interactions between spin-polarized electrons and
lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The
spin-polarized electrons are electrically injected into the semiconductor
heterostructure from a metallic ferromagnet across a Schottky tunnel barrier.
The spin-polarized electron current dynamically polarizes the nuclei in the QW,
and the polarized nuclei in turn alter the electron spin dynamics. The
steady-state electron spin is detected via the circular polarization of the
emitted electroluminescence. The nuclear polarization and electron spin
dynamics are accurately modeled using the formalism of optical orientation in
GaAs. The nuclear spin polarization in the QW is found to depend strongly on
the electron spin polarization in the QW, but only weakly on the electron
density in the QW. We are able to observe nuclear magnetic resonance (NMR) at
low applied magnetic fields on the order of a few hundred Oe by electrically
modulating the spin injected into the QW. The electrically driven NMR
demonstrates explicitly the existence of a Knight field felt by the nuclei due
to the electron spin.Comment: 19 Figures - submitted to PR
Role of electron and hole trapping in the degradation and breakdown of SiO2 and HfO2 films
We investigated possible mechanisms for correlated defect production in amorphous (a) SiO 2 and HfO 2 films under applied stress bias using ab initio simulations. During bias application, electron injection into these films may lead to the localization of up to two electrons at intrinsic trapping sites which are present due to the natural structural disorder in amorphous structures. Trapping two electrons weakens Si-O and Hf-O bonds to such an extent that the thermally activated creation of Frenkel defects, O vacancies and O 2- interstitial ions, becomes efficient even at room temperature. Bias application affects defect creation barriers and O 2- interstitial diffusion. The density of trapping sites is different in a-SiO 2 and a-HfO 2 . This leads to qualitatively different degradation kinetics, which results from different correlation in defect creation in the two materials. These effects affect TDDB statistics and its dependence on the film thickness
- …