5,117 research outputs found

    Double precision trajectory program /DPTRAJ 2.2C/

    Get PDF
    Four part program computes trajectory of space probe moving in solar system and subject to variety of forces

    Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures

    Full text link
    We present a complete description of spin injection and detection in Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K. Measurements of the steady-state spin polarization in the semiconductor indicate three temperature regimes for spin transport and relaxation. At temperatures below 70 K, spin-polarized electrons injected into quantum well structures form excitons, and the spin polarization in the quantum well depends strongly on the electrical bias conditions. At intermediate temperatures, the spin polarization is determined primarily by the spin relaxation rate for free electrons in the quantum well. This process is slow relative to the excitonic spin relaxation rate at lower temperatures and is responsible for a broad maximum in the spin polarization between 100 and 200 K. The spin injection efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher temperatures, although a steady-state spin polarization of at least 6 % is observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let

    The Dynamical Mean Field Theory phase space extension and critical properties of the finite temperature Mott transition

    Get PDF
    We consider the finite temperature metal-insulator transition in the half filled paramagnetic Hubbard model on the infinite dimensional Bethe lattice. A new method for calculating the Dynamical Mean Field Theory fixpoint surface in the phase diagram is presented and shown to be free from the convergence problems of standard forward recursion. The fixpoint equation is then analyzed using dynamical systems methods. On the fixpoint surface the eigenspectra of its Jacobian is used to characterize the hysteresis boundaries of the first order transition line and its second order critical end point. The critical point is shown to be a cusp catastrophe in the parameter space, opening a pitchfork bifurcation along the first order transition line, while the hysteresis boundaries are shown to be saddle-node bifurcations of two merging fixpoints. Using Landau theory the properties of the critical end point is determined and related to the critical eigenmode of the Jacobian. Our findings provide new insights into basic properties of this intensively studied transition.Comment: 11 pages, 12 figures, 1 tabl

    On free evolution of self gravitating, spherically symmetric waves

    Get PDF
    We perform a numerical free evolution of a selfgravitating, spherically symmetric scalar field satisfying the wave equation. The evolution equations can be written in a very simple form and are symmetric hyperbolic in Eddington-Finkelstein coordinates. The simplicity of the system allow to display and deal with the typical gauge instability present in these coordinates. The numerical evolution is performed with a standard method of lines fourth order in space and time. The time algorithm is Runge-Kutta while the space discrete derivative is symmetric (non-dissipative). The constraints are preserved under evolution (within numerical errors) and we are able to reproduce several known results.Comment: 15 pages, 15 figure

    Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges

    Get PDF
    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states caused by the disorder of amorphous metal oxide films. We start from presenting the results for amorphous (a) HfO<sub>2</sub>, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy (EPDS) measurements and theoretical calculations using density functional theory (DFT) shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO<sub>2</sub>. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modelling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO<sub>2</sub> and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO<sub>2</sub>, a-Al<sub>2</sub>O<sub>3</sub>, a-TiO<sub>2</sub>. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum (CBM) can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO<sub>2</sub> and a-SiO<sub>2</sub> weakens Hf(Si)-O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O<sup>2-</sup> ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions

    Electron Spin Dynamics and Hyperfine Interactions in Fe/Al_0.1Ga_0.9As/GaAs Spin Injection Heterostructures

    Full text link
    We have studied hyperfine interactions between spin-polarized electrons and lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The spin-polarized electrons are electrically injected into the semiconductor heterostructure from a metallic ferromagnet across a Schottky tunnel barrier. The spin-polarized electron current dynamically polarizes the nuclei in the QW, and the polarized nuclei in turn alter the electron spin dynamics. The steady-state electron spin is detected via the circular polarization of the emitted electroluminescence. The nuclear polarization and electron spin dynamics are accurately modeled using the formalism of optical orientation in GaAs. The nuclear spin polarization in the QW is found to depend strongly on the electron spin polarization in the QW, but only weakly on the electron density in the QW. We are able to observe nuclear magnetic resonance (NMR) at low applied magnetic fields on the order of a few hundred Oe by electrically modulating the spin injected into the QW. The electrically driven NMR demonstrates explicitly the existence of a Knight field felt by the nuclei due to the electron spin.Comment: 19 Figures - submitted to PR

    Role of electron and hole trapping in the degradation and breakdown of SiO2 and HfO2 films

    Get PDF
    We investigated possible mechanisms for correlated defect production in amorphous (a) SiO 2 and HfO 2 films under applied stress bias using ab initio simulations. During bias application, electron injection into these films may lead to the localization of up to two electrons at intrinsic trapping sites which are present due to the natural structural disorder in amorphous structures. Trapping two electrons weakens Si-O and Hf-O bonds to such an extent that the thermally activated creation of Frenkel defects, O vacancies and O 2- interstitial ions, becomes efficient even at room temperature. Bias application affects defect creation barriers and O 2- interstitial diffusion. The density of trapping sites is different in a-SiO 2 and a-HfO 2 . This leads to qualitatively different degradation kinetics, which results from different correlation in defect creation in the two materials. These effects affect TDDB statistics and its dependence on the film thickness
    • …
    corecore