14 research outputs found

    Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts

    Get PDF
    Ductal carcinoma in situ; Tumor microenvironment; Whole genome sequencingCarcinoma ductal in situ; Microambiente tumoral; Secuenciación del genoma completoCarcinoma ductal in situ; Microambient tumoral; Seqüenciació del genoma completDuctal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.This publication is part of the HTAN (Human Tumor Atlas Network) Consortium paper package. A list of HTAN members is available at humantumoratlas.org/htan-authors/. R01 CA185138-01 (E.S.H.); U2C CA-17-035 Pre-Cancer Atlas (PCA) Research Centers (E.S.H., R.B.W., C.M., K.P., G.A.C., K.O.); UO1 CA214183 (J.R.M.); DOD BC132057 (E.S.H., C.M.); BCRF 19-074 (E.S.H.); BCRF 19-028 (G.A.C.); PRECISION CRUK Grand Challenge (E.S.H.); R01CA193694 (R.B.W., G.A.C.), BCRF PPI-18-006 (R.B.W.). AEI RYC2019- 026576-I, "LaCaixa" Foundation LCF/PR/PR17/51120011 (J.A.S.). S.H.S. was supported by the Lundbeck Foundation (R288-2018-35) and the Danish Cancer Society (R229-A13616). K.E.H. was supported by a CIHR Banting Postdoctoral Fellowship. TBCRC 038 was conducted by the TBCRC, which receives major funding support from The Breast Cancer Research Foundation and Susan G. Komen. Some results in this paper are based upon data generated by the TCGA Research Network

    Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts

    Get PDF
    Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome

    HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer

    Get PDF
    Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor

    Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies

    No full text
    Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, leading to overdiagnosis and overtreatment. Aberrant promoter hypermethylation of specific genes has been suggested as novel candidate biomarkers for PC that may improve diagnosis and prognosis. We here analyzed ST6GALNAC3 and ZNF660 promoter methylation in prostate tissues, and ST6GALNAC3, ZNF660, CCDC181, and HAPLN3 promoter methylation in liquid biopsies. First, using four independent patient sample sets, including a total of 110 nonmalignant (NM) and 705 PC tissue samples, analyzed by methylation‐specific qPCR or methylation array, we found that hypermethylation of ST6GALNAC3 and ZNF660 was highly cancer‐specific with areas under the curve (AUC) of receiver operating characteristic (ROC) curve analysis of 0.917–0.995 and 0.846–0.903, respectively. Furthermore, ZNF660 hypermethylation was significantly associated with biochemical recurrence in two radical prostatectomy (RP) cohorts of 158 and 392 patients and remained significant also in the subsets of patients with Gleason score ≤7 (univariate Cox regression and log‐rank tests, P < 0.05), suggesting that ZNF660 methylation analysis can potentially help to stratify low‐/intermediate‐grade PCs into indolent vs. more aggressive subtypes. Notably, ZNF660 hypermethylation was also significantly associated with poor overall and PC‐specific survival in the RP cohort (n = 158) with long clinical follow‐up available. Moreover, as proof of principle, we successfully detected highly PC‐specific hypermethylated circulating tumor DNA (ctDNA) for ST6GALNAC3, ZNF660, HAPLN3, and CCDC181 in liquid biopsies (serum) from 27 patients with PC vs. 10 patients with BPH, using droplet digital methylation‐specific PCR analysis. Finally, we generated a three‐gene (ST6GALNAC3/CCDC181/HAPLN3) ctDNA hypermethylation model, which detected PC with 100% specificity and 67% sensitivity. In conclusion, we here for the first time demonstrate diagnostic biomarker potential of ST6GALNAC3 and ZNF660 methylation, as well as prognostic biomarker potential of ZNF660. Furthermore, we show that hypermethylation of four genes can be detected in ctDNA in liquid biopsies (serum) from patients with PC

    5hmC Level Predicts Biochemical Failure Following Radical Prostatectomy in Prostate Cancer Patients with ERG Negative Tumors

    Get PDF
    This study aimed to validate whether 5-hydroxymethylcytosine (5hmC) level in combination with ERG expression is a predictive biomarker for biochemical failure (BF) in men undergoing radical prostatectomy (RP) for prostate cancer (PCa). The study included 592 PCa patients from two consecutive Danish RP cohorts. 5hmC level and ERG expression were analyzed using immunohistochemistry in RP specimens. 5hmC was scored as low or high and ERG was scored as negative or positive. Risk of BF was analyzed using stratified cumulative incidences and multiple cause-specific Cox regression using competing risk assessment. Median follow-up was 10 years (95% CI: 9.5&#8315;10.2). In total, 246 patients (41.6%) had low and 346 patients (58.4%) had high 5hmC level. No significant association was found between 5hmC level or ERG expression and time to BF (p = 0.2 and p = 1.0, respectively). However, for men with ERG negative tumors, high 5hmC level was associated with increased risk of BF following RP (p = 0.01). In multiple cause-specific Cox regression analyses of ERG negative patients, high 5hmC expression was associated with time to BF (HR: 1.8; 95% CI: 1.2&#8315;2.7; p = 0.003). In conclusion, high 5hmC level was correlated with time to BF in men with ERG negative PCa, which is in accordance with previous results

    Chromatin insulation orchestrates matrix metalloproteinase gene cluster expression reprogramming in aggressive breast cancer tumors

    No full text
    Abstract Background Triple-negative breast cancer (TNBC) is an aggressive subtype that exhibits a high incidence of distant metastases and lacks targeted therapeutic options. Here we explored how the epigenome contributes to matrix metalloprotease (MMP) dysregulation impacting tumor invasion, which is the first step of the metastatic process. Methods We combined RNA expression and chromatin interaction data to identify insulator elements potentially associated with MMP gene expression and invasion. We employed CRISPR/Cas9 to disrupt the CCCTC-Binding Factor (CTCF) binding site on an insulator element downstream of the MMP8 gene (IE8) in two TNBC cellular models. We characterized these models by combining Hi-C, ATAC-seq, and RNA-seq with functional experiments to determine invasive ability. The potential of our findings to predict the progression of ductal carcinoma in situ (DCIS), was tested in data from clinical specimens. Results We explored the clinical relevance of an insulator element located within the Chr11q22.2 locus, downstream of the MMP8 gene (IE8). This regulatory element resulted in a topologically associating domain (TAD) boundary that isolated nine MMP genes into two anti-correlated expression clusters. This expression pattern was associated with worse relapse-free (HR = 1.57 [1.06 − 2.33]; p = 0.023) and overall (HR = 2.65 [1.31 − 5.37], p = 0.005) survival of TNBC patients. After CRISPR/Cas9-mediated disruption of IE8, cancer cells showed a switch in the MMP expression signature, specifically downregulating the pro-invasive MMP1 gene and upregulating the antitumorigenic MMP8 gene, resulting in reduced invasive ability and collagen degradation. We observed that the MMP expression pattern predicts DCIS that eventually progresses into invasive ductal carcinomas (AUC = 0.77, p < 0.01). Conclusion Our study demonstrates how the activation of an IE near the MMP8 gene determines the regional transcriptional regulation of MMP genes with opposing functional activity, ultimately influencing the invasive properties of aggressive forms of breast cancer
    corecore