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Molecular classification and biomarkers
of clinical outcome in breast ductal carcinoma
in situ: Analysis of TBCRC 038 and RAHBT cohorts
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Gaorav P. Gupta,8,22 Robyn Burns,8,23 Deborah J. Veis,24,25 Katherine DeSchryver,25 Chunfang Zhu,1

(Author list continued on next page)

SUMMARY

Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable
propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical out-
comes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Transla-
tional Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts.We
identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classi-
fier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include
proliferation, immune response, andmetabolism. Distinct stromal expression patterns and immune cell com-
positions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved
atlas of breast precancers, where complementary modalities can be directly compared and correlated with
conventional pathology findings, disease states, and clinical outcome.

INTRODUCTION

As nonobligate precursors of invasive disease, precancers pro-

vide a unique vantage point to study molecular pathways and

evolutionary dynamics leading to the development of life-threat-

ening cancers. Breast ductal carcinoma in situ (DCIS) is one of

the most common precancers across all tissues, with �50,000

women diagnosed each year in the United States.1 Current treat-

ment of DCIS involves breast conserving surgery or mastec-

tomy, with the goal of preventing invasive cancer. However,

DCIS consists of a molecularly heterogeneous group of lesions,

with highly variable risk of invasive progression. Improved under-

standing of which DCIS is likely to progress could spare a sub-

group of women unnecessary treatment.
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Identification of factors associated with disease progression

has been studied extensively. Epidemiologic cancer progression

models indicate that clinical features like age at diagnosis, tumor

grade, and hormone receptor expression may have some prog-

nostic value, but they have limited ability to identify the biologic

conditions that govern DCIS progression to invasive breast can-

cer (IBC). Previous molecular analyses of DCIS have studied

either (1) cohorts of pure DCIS with known outcomes (e.g., dis-

ease-free vs. recurrent) or (2) cross-sectional cohorts of DCIS

with or without adjacent IBC.2–10 These approaches have tested

potentially divergent assumptions: recurrence of the DCIS, as

IBC may arise from neoplastic cells left behind when the DCIS

was removed, be related to initial field effect, or develop inde-

pendently. Longitudinal cohorts provide a perspective of cancer

progression over time. Analysis of DCIS adjacent to IBC as-

sumes these preinvasive areas are good models for pure DCIS

and are ancestors of the invasive cancer cells, with synchronous

lesions inferring progression. To date, these studies have not

produced clear evidence for a common set of events associated

with invasion.

Moreover, few genomic aberrations have been identified that

can differentiate DCIS from IBC,4,6,7,11–13 and microenviron-

mental processes, including collagen organization, myoepithe-

lial changes, and immune suppression, may contribute to IBC

development.2,3,5 Presently, it remains unknown how these

different molecular axes contribute to DCIS evolution.

Here, as part of the Human Tumor Atlas Network (HTAN), we

present two DCIS cohorts, the Translational Breast Cancer

Research Consortium (TBCRC) 038 study and the Resource of

Archival Breast Tissue (RAHBT), for multimodal molecular ana-

lyses. We performed comprehensive integrated molecular

profiling of these complementary, clinically annotated, longitudi-

nally sampled cohorts to understand the spectrum of molecular

changes in DCIS and to identify both tumor and stromal

predictors of subsequent events. We used multidimensional

and multiparametric approaches to address central conceptual

themes of cancer progression, ecology, and evolutionary

biology. We hypothesize that the breast precancer atlas (PCA)

presented here will facilitate phylogenetic analysis to reconstruct

the relationship between DCIS and IBC, the natural history of

DCIS, and factors that underlie progression to invasive disease.

RESULTS

Study design and cohorts
We generated two retrospective case-control cohorts of patients

initially diagnosed with pure DCIS with or without a subsequent

ipsilateral breast event (iBE, eitherDCISor IBC)after surgical treat-

ment. Identical eligibility criteria were used for outcome analysis in

bothcohorts.TheRAHBTcohortused for outcomeanalysishas97

individualswithmediandiagnosis at age53and40monthsmedian

time to recurrence. Over half (66.0%) had lumpectomywith radia-

tion, 10.3% had lumpectomy without radiation, and 35% were

identified as Black. The TBCRC cohort included 216 patients

with median diagnosis at age 52 and 48 months median time to

recurrence. More than half (55.5%) had lumpectomy with radia-

tion, 15.3% had lumpectomy without radiation, and 30.0% were

identified as Black (Table 1). Figure 1 shows an outline of cohorts

and analyses in this study. Table 1 summarizes the RAHBT and

TBCRC cohorts used for outcome analysis, Table S1 summarizes

the RAHBT laser capture microdissection (LCM) cohort, and

Table S2 summarizes the assays in this study by cohort.

Prognostic classifier predicts early recurrence
The TBCRC and RAHBT cohorts were designed to investigate

biological determinants of recurrence by matching patients

with subsequent iBE to patients that did not have any events dur-

ing long-term follow-up.

To identify gene expression patterns correlatingwith outcome,

we analyzed RNA from primary DCIS with iBEs within 5 years vs.

the remaining samples in TBCRC, to avoid including non-clonal

events that might be more common in later years. We identified
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812 differentially expressed (DE) genes at 0.05 false discovery

rate (FDR) (Figure 2A and Table S3).

To identify copy number aberrations (CNAs) that correlate with

outcome, we performed light-pass whole genome sequencing

(WGS) on DNA from formalin-fixed, paraffin-embedded (FFPE)

samples in both cohorts (n = 228). We identified 29 recurrent

CNAs across both cohorts, none of which were predictive of

recurrence (Figure S1A). Given the absence of significant

Table 1. Breast Pre-cancer Atlas Patient Cohorts with RNA-seq data and ipsilateral breast event used for outcome analysis

TBCRC RAHBT

DCIS without

recurrence

(n = 95)

DCIS with DCIS

recurrence

(n = 66)

DCIS with invasive

recurrence (n = 55)

DCIS without

recurrence

(n = 68)

DCIS with DCIS

recurrence

(n = 15)

DCIS with invasive

recurrence (n = 14)

Year of diagnosis

Median 2009 2008 2006 2006 2008 2009

Age at diagnosis

Median 54 54 50 52 53 52

Mean (±SD) 54.4 (±8.5) 55.2 (±9.8) 52.6 (±9.8) 53.1 (±7.2) 52.,5 (±6.0) 55.1 (±11.1)

Grade

1 5 (5.3%) 6 (9.0%) 3 (5.5%) 18 (26.5%) 4 (26.7%) 3 (21.4%)

2 37 (38.9%) 26 (39.4%) 19 (34.5%) 28 (48.2%) 4 (26.7%) 8 (57.1%)

3 53 (55.8%) 34 (51.5%) 33 (60.0%) 22 (32.4%) 7 (46.7%) 2 (21.4%)

Pathologic tumor size

Median 2.1 1.5 1.9

Mean (±SD) 2.7 (±1.9) 2.2 (±2.0) 2.8 (±2.6)

Marker status

ER(+) 60 (63.2%) 41 (62.1%) 37 (67.3%) 55 (80.9%) 8 (53.3%) 12 (85.7%)

ER(�) 35 (36.8%) 25 (37.9%) 18 (32.7%) 13 (19.1%) 7 (46.7%) 2 (14.3%)

ER(+) Dx before 2000 0 2 (3.0%) 4 (7.3%) 3 (4.4%) 0 3 (21.4%)

ER(+) Dx 2000 & after 60 (63.2%) 39 (59.1%) 33 (60.0%) 52 (76.5%) 8 (53.3%) 9 (64.3%)

ER(�) Dx before 2000 0 0 1 (1.8%) 2 (2.9%) 2 (13.3%) 0

ER(�) Dx 2000 & after 35 (36.8%) 25 (37.9%) 17 (30.9%) 11 (16.2%) 5 (33.3%) 2 (14.3%)

Treatment

Lumpectomy + radiation 58 (61.1%) 40 (60.6%) 22 (40.0%) 6 (8.8%) 2 (13.3%) 2 (14.3%)

Lumpectomy – radiation 5 (5.3%) 16 (25.2%) 12 (21.8%) 45 (66.2%) 11 (73.3%) 8 (57.1%)

Lumpectomy radiation

Unknown

1 (1.1%) 1 (1.5%) 2 (3.6%) 0 0 0

Mastectomy 31 (32.6%) 9 (13.6%) 19 (34.5%) 17 (25.0%) 2 (13.3%) 4 (28.6%)

Time to recurrencea (months)

Mean (±SD) 105.7 (±37.0) 52.7 (±39.9) 71.2 (±43.9) 139.8 (±52.7) 54.9 (±40.4) 73.4 (±68.4)

Median 96 40 58 141 36 47

Margins

Ink on tumor 0 0 0 0 0 0

<2mm 27 (28.4%) 28 (42.4%) 17 (30.9%) 15 (22.1%) 4 (26.7%) 6 (42.9%)

At leastR 2mm 37 (38.9%) 25 (37.9%) 21 (38.2%) 11 (16.2%) 4 (26.7%) 1 (7.1%)

Clear, unknown mm 31 (32.6%) 13 (19.7%) 17 (30.9%) 42 (61.8%) 7 (46.7%) 7 (50.0%)

Race

White 62 (65.2%) 38 (57.6%) 28 (50.9%) 44 (64.7%) 10 (66.7%) 9 (64.3%)

Black 22 (23.2%) 21 (31.8%) 22 (40.0%) 24 (35.3%) 5 (33.3%) 5 (35.7%)

Asian 2 (2.1%) 1 (1.5%) 2 (3.6%) 0 0 0

Pacific Islander 0 1 (1.5%) 0 0 0 0

Other 0 0 0 0 0 0

Unknown 9 (9.5%) 5 (7.6%) 3 (5.5%) 0 0 0
aTo end of follow-up for no recurrence. See also Table S1.
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CNAs, we trained a random forest classifier in TBCRC using only

the 812 DE genes. The classifier was validated in RAHBT, with an

area under the receiver operating characteristic curve (ROC

AUC) of 0.72 (Figure 2B), precision of 0.86, recall of 0.91, and

F1 score of 0.88, indicating that the classifier performed well

also in the test cohort. The classifier significantly predicted any

subsequent iBE in both cohorts (RAHBT p = 0.0004, Figure 2C).

Importantly it was also a significant predictor of invasive iBEs

over the full follow-up time (TBCRC p < 0.0001, RAHBT p =

0.0042, Figures 2D and 2E), demonstrating the classifier could

specifically identify DCIS that progress to IBC.

Next, we examined whether the 812-gene classifier remained

an independent predictor of outcome when combined with clin-

ical features. We performed multivariable Cox regression anal-

ysis including the classifier, treatment, age, clinical ER, and

DCIS grade (Figures S1B and S1C). While multivariable analysis

demonstrated a trend for treatment type and ER status for

outcome, only the 812-gene classifier was significant in both co-

horts (RAHBT hazard ratio [HR] = 3.48 [95% CI: 1.14–10.6], p =

0.028). Importantly, in multivariable analysis for invasive iBEs

only, the classifier showed an even stronger prognostic value

in both cohorts, with an HR of 7.33 in RAHBT (95% CI: 1.57–

34.2, p = 0.011, Figures 2F and 2G).While previous studies found

an association between ER status and DCIS outcome,14–16

Kaplan-Meier analysis of clinical ER status (IHC-based) demon-

strated a trend in RAHBT (p = 0.053) but not in TBCRC (p = 0.2,

Figures S1D and S1E). Moreover, the 812-gene classifier

showed no prognostic value for progression-free disease or

overall survival for 1,064 IBCs from The Cancer Genome Atlas

(TCGA,17 Figures S1F–S1I), suggesting that the classifier is spe-

cific for the DCIS stage. To compare the 812-gene classifier to

commercially available prognostic tests for DCIS, we calculated

the Oncotype DCIS score as previously described18 using

TBCRC and RAHBT RNA sequencing data. We found that, in

contrast to the 812-gene classifier, the DCIS Oncotype score

did not differ between the outcome groups in either cohort

(Figures S1J and S1K).

The 812-gene classifier likely represents several distinct bio-

logic processes that promote recurrence and invasive progres-

sion. To further understand the biology and identify pathways

involved in recurrence, we performed gene set enrichment anal-

ysis (GSEA) on DE genes between cases with 5-year recurrence

vs. the rest in TBCRC.We identified 11 hallmark pathways signif-

icantly associated with early recurrence including those associ-

ated with proliferation, immune response, and metabolism

(Figure S1L).

To further examine pathway activation status, we performed

gene set variation analysis (GSVA) at the individual tumor level

in 5-year outcome groups. Here, MYC and mTORc1 signaling

were increased in cases vs. controls and strongly correlated

(Figures 3A–3C). We also observed high correlation between

cell cycle-linked G2M and E2F pathways. Further, glycolysis

and oxidative phosphorylation were increased in cases, and

the significant positive correlation between these two pathways

indicated that metabolically active tumors use both pathways.

Overall, this analysis confirmed the finding from the differential

abundance and GSEA analysis of 5-year outcome groups.

DCIS RNA clustering defines expression modules that
drive outcome
Since proliferation and metabolism were identified as important

pathways in recurrence, we next examined whether these path-

ways are driven by major DCIS phenotypes. Previous studies

suggested that IBC subtypes do not fit well for DCIS.19 We

Figure 1. Cohorts and methods outline

Two retrospective study cohorts were generated, consisting of ductal carcinoma in situ (DCIS) patients with either a subsequent ipsilateral breast event (iBE) or no

later events after surgical treatment. TBCRC samples were macrodissected for downstream RNA and DNA analyses. RAHBT samples were (1) macrodissected

like TBCRC or (2) organized into a tissue microarray (TMA) from which serial sections were made for RNA, DNA, and protein (MIBI) analysis (RAHBT LCM cohort).

TMA cores were laser capture microdissected to ensure pure epithelial and stromal components. See also Tables S1 and S2.
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Figure 2. Identification, training, and validation of 812-gene classifier

(A) Heatmap of 812 differentially expressed (DE) genes from cases vs. controls analysis (5-year outcome) in TBCRC. Covariates show ER and HER2 status, DCIS

grade, treatment, and type of iBE/no iBE.

(legend continued on next page)
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hypothesized that a DCIS-specific classification scheme would

better address DCIS biology. To investigate the biology behind

the outcome analysis with emphasis on epithelial pathways,

we performed unsupervised clustering of RNA-seq data from

TBCRC (n = 216) as well as an additional group of RAHBT cases

(n = 265, Table S1) where we generated epithelial-enriched

samples by LCM to evaluate tumor cell expression patterns

without contributions from the tumor microenvironment (TME,

Figures S2A–S2F).

We performed non-negative matrix factorization (NMF) on

all protein coding genes (GENCODE v33) with non-zero variance,

evaluated the fit of 2–10 clusters, and selected a three-

cluster solution based on silhouette width, cophenetic

value, maximizing cluster number, and replication in RAHBT

(Figures S2G–S2J). The three-cluster solution most reproducibly

captured the biologic subgroups in both cohorts. To ensure the

identified clusters were not an artifact of the clustering method,

we ran consensus clustering in TBCRC, which rediscovered

three clusters with high concordance with the NMF clusters

(85.6%, Figure S2K). In both cohorts, cluster 1 had significantly

higher ERBB2 and lower ESR1 expression compared with clus-

ters 2 and 3 (Figures 4A and 4B), which both had increased ESR1

expression. We termed the three clusters ERlow, quiescent, and

ERhigh respectively. To characterize these clusters, we conduct-

ed differential abundance analysis comparing each cluster

individually to the other two combined (one-vs-rest). The deregu-

lated pathways in each cluster were highly concordant across

both cohorts, further supporting three transcriptional patterns

in DCIS that are driven by the tumor cell compartment (PERlow =

2.333 10�2; Pquiescent = 8.373 10�2; PERhigh = 9.203 10�10; hy-

pergeometric test; Figure S2L).

While we observed a differential expression of the estrogen

response in the ERhigh cluster vs. ERlow cluster, the most striking

patterns involved pathways associated with DCIS recurrence

(Figures 4C and S2L). Pathways including MYC, mTOR

signaling, and cell cycle pathways were enriched in ERlow and

significantly depleted in the quiescent cluster. Moreover, the

allograft rejection, p53 and adipogenesis pathways were high

in ERlow and low in ERhigh. Finally, ERhigh tumors were depleted

for UV response down and enriched for oxidative phosphoryla-

tion pathways, both of which were associated with recurrence.

None of the recurrence-associated pathways were enriched in

the quiescent cluster. The presence of the allograft rejection

pathway in RAHBT LCM epithelial samples, though not signifi-

cant, suggests that immune cells have infiltrated the epithelial

compartment in the involved samples. Thus, the three-cluster

solution identified pathways associated with recurrence.

Genomic and transcriptomic-based classifications of IBC20,21

have characterized the spectrum of invasive breast cancer sub-

types, but it remains unclear whether these accurately describe

the spectrum of DCIS. To investigate, we applied the PAM50

classification to TBCRC and RAHBT LCM epithelial DCIS sam-

ples and evaluated the correlation of each sample to the centroid

of its assigned subtype. We compared this correlation to IBCs

from TCGA through repeated downsampling of the TCGA. The

median correlation was consistently lower in DCIS compared

with IBC, with the most pronounced difference in the basal-like

subtype (Figure S2M), as previously shown.19 Significantly

decreased correlation was also observed for luminal A (p =

3.13 3 10�3) and normal-like subtypes (p = 6.21 3 10�3).

UMAP projection of the DCIS transcriptome revealed clear devi-

ations from the PAM50 centroids (Figures S2N and S2O), and

PAM50 failed to predict DCIS recurrence (Figures S2P–S2Q).

These data suggest that while established IBC subtypes can

be identified in DCIS, they do not fit DCIS as robustly as IBC

and are not prognostic in these premalignant lesions.

In support of the three-cluster solution, we investigated MIBI

protein expression for a subset of patients (n = 71). The fre-

quency of ER+ tumor cells was significantly higher in the quies-

cent and ERhigh subtypes compared with ERlow (log2FC = 2.73;

p = 2.11 3 10�5; Wilcoxon rank-sum test), while HER2+ tumor

cells were significantly higher in the ERlow subtype (log2FC =

4.88; p = 3.743 10�2; Wilcoxon rank-sum test; Figure 4D). Over-

all, the frequencies of ER+ and HER2+ tumor cells were well

correlated with RNA abundance of ESR1 and ERBB2, respec-

tively (Figures S2R and S2S). PGR levels were upregulated in

quiescent and ERhigh compared with ERlow (Figure S2T). Based

onMIBI data, quiescent lesions were depleted for Ki67 (log2FC =

�1.46; p = 8.08 3 10�2; Wilcoxon rank-sum test) and GLUT1

(log2FC = �2.64; p = 8.47 3 10�3) positive tumor cells, vs.

ERhigh and ERlow tumors, suggesting quiescent lesions are less

proliferative and less metabolically active (Figures 4D and 4E).

In their analysis of DCIS tumors and TME by MIBI, Risom et al.

identified myoepithelial E-cadherin expression as the most

discriminative feature for risk of progression (Figures 6A and

6B in Risom et al.22). To investigate this in relation to the identi-

fied RNA clusters, we compared the distribution of myoepithelial

E-cadherin frequency by MIBI in matched RAHBT LCM RNA

samples. We found that ERhigh lesions had significantly higher

myoepithelial E-cadherin frequency compared with ERlow and

quiescent lesions (p % 0.026, Figure 4F). While most recur-

rence-associated pathways were enriched in ERlow lesions,

this points to a feature associated with recurrence among ER+

DCIS tumors, and it highlights that there are multiple paths to

progression in DCIS.

Amplifications characteristic of high-risk of relapse IBC
occur in DCIS
Next, we investigated how CNAs in DCIS contribute to pathways

associated with DCIS recurrence. Among the 29 recurrent CNAs

identified across both cohorts, we found 13 gains and 16 losses,

occurring in 10.1%–52.6% of DCIS samples (FDR < 0.05; GIS-

TIC2; Figure 5A). The identification of these common CNAs

was not biased by depth of sequencing, but twowere associated

(B) ROC curve of the 812-gene classifier in RAHBT.

(C) Kaplan-Meier plot of time to iBE (5-year outcome) stratified by classifier risk groups in RAHBT.

(D and E) Kaplan-Meier plot of time to invasive progression (full follow-up) stratified by classifier risk groups in TBCRC (D) and RAHBT (E). (C–E) p values from log

rank tests.

(F and G) Forest plot of multivariable Cox regression analysis including classifier risk groups, treatment, age, DCIS grade, and ER status for invasive iBEs (full

follow-up) in TBCRC (F) and RAHBT (G). See also Figure S1 and Table S3.
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with cohort (1p21.3 and 10p15.3 deletions, Table S4). The most

frequent alterations were gains of chromosomes 1q and 17q,

including 17q12 where the ERBB2 oncogene is located, and

loss of chromosome 17p, 16q, and 11q (Figure 5A), confirming

prior findings5,9,12,23 and notably reflecting the CNA landscape

of IBC.20,24

Next, we investigated if the distribution of proportion of the

genome copy number altered (PGA) was biased in the 5-year

outcome groups or 812-gene classifier risk groups, but we found

no significant differential distribution (Figures 5B–5C). PGA was

not correlated to sequencing depth nor predictive of iBEs

(Figures S3A and S3B).

Early patterns of alterationsmay provide insight into themech-

anisms of neoplastic lesion development and progression. To

identify genomic subtypes in DCIS, we employed unsupervised

NMF clustering of CNA segments on TBCRC and RAHBT jointly

and identified eight clusters ranging in size from 2–98 samples

(Figures 5D, S3C, and S3D) that were not biased by depth of

sequencing (Figure S3E). CNA cluster 1 was characterized by

chr20q13.2 amplification (Figure 5E). Three clusters were char-

acterized by chr17q amplification (cluster 2: 17q11, cluster 3:

chr17q23.1, cluster 4: chr17q12). Cluster 5 had chr8p11.23

amplification, cluster 6 had chr11q13.3 amplification, and cluster

7 had amplification of MYC on chr8q24. Cluster 8, the largest

group (n = 98), represented a CNA quiet subgroup, characterized

by the absence or diminished signal of these CNAs.

Integrative subgroups (ICs) is an IBC classification scheme

based on genomic copy number and expression profiles.20

Intriguingly, despite the eight CNA clusters not being associated

with recurrence (Figures S3F and S3G), several of these clusters

were attributed to the presence or absence of CNAs character-

istic of IC subtypes, namely the four high-risk-of-relapse ER+/

HER2- subgroups (IC1, 2, 6, 9) and the HER2-amplified (IC5)

subgroup25 (Figure 5E). Of note, these four high-risk integrative

subgroups (IC1, 2, 6, 9) account for 25% of ER+/HER2– IBC

and the majority of distant relapses.25 Integrative subtypes are

prognostic in IBC and improve the prediction of late relapse rela-

tive to clinical covariates. Understanding the clinical course of

DCIS lesions harboring these high-risk invasive features is highly

relevant in refining clinically meaningful risk associated with

DCIS progression.

To identify enriched pathways in the eight CNA clusters, we

investigated the differential abundance in matched RNA sam-

ples (DESeq2 one-vs.-rest) and performed GSEA hallmark anal-

ysis on the resulting gene lists. Clusters 6 (chr11q13 amplifica-

tion) and 7 (chr8q24 (MYC) amplification) were enriched for

pathways associated with recurrence (allograft rejection and

oxidative phosphorylation, respectively), whereas cluster 8

(CNA quiet) was depleted of recurrence-associated pathways

(cell cycle and mTORc1 signaling), and cluster 6 was depleted

of MYC targets (Figures 5F and S3H). The remaining CNA clus-

ters had no significant pathway enrichments. Thus, we identified

a CNA-based cluster solution characterized by amplifications

seen in high-risk IBC subtypes, including 17q12 (ERBB2) and

8q24 (MYC) amplification, some of which were significantly en-

riched or depleted for pathways associated with recurrence.

The DCIS TME reflects distinct immune and fibroblast
states
The hallmark pathways identified represent a diverse set of bio-

logic events and may involve different components of the DCIS

ecosystem including the cells within the TME. Accumulating ev-

idence has shown that the TME is crucial for cancer develop-

ment and progression.26,27 To analyze the DCIS TME, we gener-

ated RAHBT LCM stromal samples by dissecting stromal tissue

from the DCIS edge (Figures S2D–S2F).

To identify the contribution of epithelial and stromal compo-

nents to the 812-gene classifier, we performed differential abun-

dance analysis between stromal (n = 196) and epithelial (n = 265)

samples from the RAHBT LCM cohort. We identified 9748 DE

genes (FDR < 0.05) between epithelium and stroma (5,161

epithelial, 4,587 stromal). An analysis of the 812 classifier genes

showed that 20%were expressed primarily in stromal/TME cells

and 34% in epithelium (Table S3).

The MIBI method provides an orthogonal view of the TME and

generates protein expression and identity of 16 different cell

types including epithelial, fibroblasts, and immune cell types.22

We used adjacent TMA sections to analyze RNA and MIBI

expression on the same ducts. We compared MIBI-based cell

type distribution across samples with the inferred cell type distri-

bution from RNA expression data using CIBERSORTx (CSx, see

STARMethods, Figures S4A and S4B), allowing us to cross-vali-

date findings and extend observations on cell composition to

DCIS samples without MIBI data, including the TBCRC cohort.

To define discrete TME phenotypes, we performed shared

nearest neighborhood clustering of stromal RNA data and iden-

tified four distinct DCIS-associated stromal clusters (Figure 6A)

and DE genes (DESeq2 each-vs-rest, Figure 6B). Pathway an-

alyses (Figures 6Cand S4C), MIBI protein expression and cell

type distribution (Figure 6D), and CSx-inferred cell type distri-

bution (Figures 6E and S4D–S4G) were used to describe major

characteristics of each cluster, which were termed ‘‘immune

dense,’’ ‘‘desmoplastic,’’ ‘‘collagen-rich,’’ and ‘‘normal-like.’’

Figure 6F shows representative MIBI images of each cluster,

with strong correlation with fibroblast states and immune cell

density.

The immune stromal cluster was the most distinct stromal

subtype, with enrichment for the outcome-associated allograft

rejection and other immune activation pathways. MIBI and CSx

data demonstrated a total abundance of immune cells more

than twice that of any other cluster, with predominance of

lymphoid over myeloid cells. A subgroup within this cluster

was highly enriched for B cells, whereas another displayed

overall balanced immune cell type composition. The immune

cluster also showed association with MIBI-identified T cell-

and B cell-enriched neighborhoods (see Risom et al.22 for

Figure 3. Outcome-associated pathways in individual samples

(A) Heatmap of single-sample gene set variation analysis of 11 hallmark pathways associated with recurrence.

(B) Percentage of samples in 5-year outcome groups enriched for each pathway in (A).

(C) Plot of Pearson’s correlations between pathways in (A). Blue: positive. Red: negative. White: p > 0.05. Color intensity and circle size are proportional to

correlation coefficients.
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Figure 4. Transcriptomic DCIS subtypes correlate with outcome pathways

(A) Heatmap of 90 informative genes, contributing to the three subtypes in TBCRC samples. Covariates indicate PAM50 and IC subtypes and ERBB2 and ESR1

mRNA abundance for each sample.

(legend continued on next page)
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details), with myoepithelial- and myeloid-enriched neighbor-

hoods (Figure S5A), and was enriched for the ERlow subtype

(Figure S5B).

The normal-like cluster was enriched for Gene Ontology path-

ways involved with ECM organization, complement and coagu-

lation cascades, focal adhesion, and PI3K-AKT signaling. The

collagen-rich cluster was characterized by collagenmetabolism,

TGFb signaling, and proteoglycans in cancer, and cell substrate

and focal adhesion. This cluster had the highest fibroblast abun-

dance and total myeloid cells, mostly associated with macro-

phages and myeloid dendritic cells (mDC). According to MIBI,

this cluster was enriched in collagen and fibroblast associated

protein positive (FAP+, VIM+, SMA+) myofibroblasts. The des-

moplastic cluster was characterized by mammary gland devel-

opment and fatty acid metabolism, high presence of VIM+,

SMA+ myofibroblasts by MIBI, and higher levels of CD8+

T cells assessed by CSx vs. the normal-like and collagen-rich

clusters (Figure S5C).

These analyses indicate that the immune response is present

in a discrete subset of cases. However, outcome analysis by

stromal subtype demonstrated a modest outcome difference,

without major contribution from the immune subcluster (p =

0.12, log rank test, Figure S6A). We hypothesized that the

outcome differences could be attributed to a subset of immune

cells rather than the entire immune response, and we analyzed

CSx-inferred cell type distribution in 5-year outcome groups in

TBCRC and RAHBT combined. We identified significantly higher

levels of CD4+ T cells, myeloid- and plasmacytoid dendritic cells

(pDC), monocytes, macrophages, and overall immune cells in

cases vs. controls (Figure 6G). Furthermore, we found that

several cell types, including CD4 T cells, mDCs, and pDCs,

were significant predictors of any iBE 5 years after treatment

(univariable Cox regression analysis, Table S5). These differ-

ences in outcome groups were overall mirrored by CSx-inferred

cell type distributions in the high- and low-risk classifier groups

(Figure S6B). Finally, we investigated the distribution of CSx-

based cell types in 5-year outcome groups stratified by iBE

type. The results overall reflected the analysis in cases vs. con-

trols, with the largest differences observed between invasive

iBEs and controls (Figure S6C).

Taken together, these results support the contributions of indi-

vidual immune cells with high-risk outcomes. However, non-im-

mune cell phenotypes are not well defined by this CSx approach

but can still be identified as a biologic response. The desmoplastic

cluster had the clearest and most favorable outcome (HR = 0.23,

p = 0.06, Figure S6B), despite being enriched for several recur-

rence-associated pathways, including proliferative signals (MYC

andG2Mcheckpoint) associatedwith poor outcome in the epithe-

lial compartment. This highlights the complexity and differential

contribution from the stromal and epithelial compartments.

DISCUSSION

The aims of the HTAN Breast Pre-Cancer Atlas are (1) to develop

a resource of multimodal spatially resolved data from breast pre-

invasive samples that will facilitate discoveries by the scientific

community regarding the natural history of DCIS and predictors

of progression to life-threatening IBC and (2) to populate that

platform with data from retrospective cohorts of patients with

DCIS and demonstrate its use to construct an atlas to test novel

biologic insights. Here, we examined two well-annotated, retro-

spective, longitudinal patient cohorts with or without a subse-

quent iBE. The two cohorts have important and distinct differ-

ences. They comprise subjects from diverse geographical

sites, race/ethnicities, median years of diagnosis, and time to

recurrence. There were no significant differences in age at diag-

nosis or treatment across cohorts. Together, these cohorts

comprise a large series of matched case-control samples allow-

ing great statistical power to perform the comprehensive studies

reported here. A particular strength of the study is the comple-

mentary nature of the two cohorts, allowing for validation of

our findings, as well as the capability to separately study the

epithelial and stromal components in RAHBT LCM samples.

Future observations on a DCIS cohort undergoing watchful wait-

ing would provide outcome results that may be more aligned

with emerging personalized treatment strategies of DCIS, which

could include non-surgical options.

DCIS is a heterogeneous disease with variable prognosis but

has defied attempts to identify molecular factors associated

with future progression. Previous studies have evaluated the

prognostic value of biomarkers associated with outcomes,

with conflicting conclusions for virtually all markers tested,

including ER, HER2, immune markers such as tumor infiltrating

lymphocytes, and stromal characteristics. Many promising leads

have not been reproducible due to multiple factors, including

lack of endpoint standardization, differences between cohorts,

small sample size, and limited datasets for validation with long-

term outcomes.

Herein, we have developed and validated an 812-gene classi-

fier that independently predicted risk of both overall recurrence

and invasive progression. This classifier was highly associated

with outcome in a multivariable model that included treatment,

age, grade, and clinical ER status; the classifier had an HR of

22.5 (95% CI 8.5–59.4) in the training set and 7.3 (95% CI 1.6–

34.2) in the validation set, over 4-fold higher than has been pre-

viously reported for other prognostic markers for DCIS.14

Importantly, we found that this classifier was a stronger pre-

dictor of 5-year recurrence or progression than previously

described clinical factors, including age at diagnosis, tumor

grade, ER status, or treatment. The large dataset, with a high

number of events, permitted an agnostic analysis of all

(B) Heatmap of DCIS subtypes in RAHBT.

(C) Gene set enrichment analysis with hallmark gene sets of each cluster vs. rest for TBCRC and RAHBT LCM (outcome-associated pathways only). Dot size and

color indicate magnitude and direction of pathway deregulation. Background shading indicates false discovery rate (FDR). Covariates indicate DCIS subtype and

cohort. Effect size and FDR from GSEA algorithm.

(D) Box plots of HER2, ER, Ki67, and GLUT1 expression by MIBI in DCIS subtypes. Dot color indicates ERBB2 genomic amplification level.

(E) Representative MIBI images of the three subtypes. White = Nuc; blue = PanKRT; yellow = SMA; pink = GLUT1; cyan = HER2; green = ER; red = Ki67.

(F) Boxplot of myoepithelial ECAD frequency by MIBI in the three subtypes. p values from Wilcoxon rank-sum test. (D, F) Boxplot represents median, 0.25 and

0.75 quantiles with whiskers at 1.5x interquartile range. See also Figure S2.
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Figure 5. Characteristic IBC CNAs are present in DCIS

(A) Heatmap (log2 copy number) of 29 recurrently altered copy number alterations (CNAs) in each sample grouped by 5-year outcome groups (top bar). Red =

gain. Blue = loss. Middle barplot: proportion of samples with each CNA. Right barplot: FDR from Kruskal-Wallis test of each CNA with outcome groups.

(legend continued on next page)
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genome-wide features and was thus less opportunistic than

other, more limited studies. Further, since no a priori assump-

tions were made regarding whether to incorporate the molecular

features of invasive cancer, we were able to construct a less

biased predictor.

Our classifier is characterized by several hallmark pathways

including some related to cell cycle progression and growth fac-

tor signaling (E2F targets, G2M checkpoint, MYC targets,

mTORc1 signaling) and metabolism (glycolysis, oxidative phos-

phorylation). Examination of pathway activation status at the in-

dividual tumor level revealed the underlying complexity of the

classifier. High correlation between cell cycle-linked E2F and

G2M pathways is consistent with a proliferation-related signa-

ture. However, the strongest features of the classifier (distin-

guishing cases from controls) wereMYCandMTORC1 signaling,

which are strongly correlated with each other but less so with the

canonical proliferation pathways, indicating that proliferation

alone is not the central predictor. Interestingly, both glycolysis

and oxidative phosphorylation pathways were increased in

cases, suggesting that heightened metabolic activity is associ-

ated with risk of progression regardless of whether it is anaer-

obic. Finally, allograft rejection, a broad immune pathway, was

elevated in cases and in general appeared to be an independent

component of the classifier. Overall, there are multiple compo-

nents to this classifier that are elevated in different subsets of

the tumors lending additional evidence that simplified predictors

fail to capture the heterogeneity of the disease.

IBC has been genomically profiled with several approaches,

including the PAM50 and IC classification schemes. While

DCIS and IBC are part of the same neoplastic process, there

are differences in the TME, evolutionary age, and inter-observer

variability in diagnostic labeling at different stages of progres-

sion. This suggests that a DCIS-specific classification scheme

would correlate better with biologic and clinical features of

DCIS. Our analysis indicated the PAM50 subtypes are not apt

for DCIS characterization, as previously described.19,28 Instead,

we identified three transcriptomic DCIS subgroups, character-

ized by ER signaling, proliferation, and metabolism. These sub-

types more accurately capture the spectrum of DCIS biology

than IBC-derived subtypes, and they represent the fundamental

genomic organization at this early stage of breast neoplasia.

They may represent the earliest variation in neoplasia tran-

scriptome, potentially applicable to earlier stages such as

hyperplasias.

There are several possible reasons why traditional IBC classi-

fiers do not perform well on DCIS. HER2 expression is more

common at the DCIS stage than at the IBC stage,29 which may

lead to a different transcriptomic distribution in DCIS vs. IBC.

Many ER– DCISs express HER2 without amplification, in

contrast to IBC, where the HER2-amplified subtype is clearer.

Moreover, DCIS cells are confined to the epithelial compartment

and interact with myoepithelial cells and the basement mem-

brane, thus presumably restricted by rules of differentiation

that govern normal epithelial cells, which could constrain the

transcriptomic variability of neoplastic cells and in turn possible

subtypes. Finally, the evolutionary age of the neoplasm may in-

fluence classification differences in DCIS vs. IBC. By comparing

WGS data from DCIS and IBCs, we found that the same constel-

lation of copy number changes was present in both, consistent

with previous studies.30–32 While DCIS had fewer genomic alter-

ations than IBC, and a larger group of DCIS was classified as ge-

nomically quiescent, recurrent genomic events that drive the

IBC-based IC scheme were evident at the DCIS stage.

A unique aspect of our study is the separate profiling of stro-

mal and epithelial components through CSx analysis of LCM-

derived RNA coupled with in situ MIBI protein expression. We

identified four stromal subtypes characterized by distinct path-

ways, stromal, and immune cell composition. Specific stromal

patterns were correlated with epithelial expression patterns,

and particularly HER2+/ER– DCISs were associated with a

stronger immune response, potentially associated with co-

amplification of ERBB2 (HER2) and chemokine encoding genes

on the 17q12 chromosomal region.3 A limitation of this study is

that our CSx approach did not facilitate identification of non-im-

mune stromal cell types.

Generating a DCIS atlas is similar to the effort of TCGA for IBC,

but there are important differences. Working with DCIS samples

is considerably more challenging; while IBC tumors are evident

by gross exam and can be easily obtained as fresh, fresh frozen,

or archival material, this is not the case for preinvasive lesions.

DCIS can sometimes be recognized radiographically but is

only precisely detailed by pathologic examination, making pro-

spective tissue collection a challenge. Moreover, the transition

from intraepithelial to invasive neoplasia is definitional for IBC.

For DCIS, such a clear-cut definition does not exist. DCIS is

broadly defined by cytologic and architectural changes

compared with normal breast tissue by a growth of neoplastic

cells in the inter-epithelial compartment.

One issue that should be noted is the genetic relationship be-

tween the primary DCIS and the subsequent ipsilateral cancer.

Recent work33 on a large cohort indicates that 18% of ipsilateral

invasive events may be unrelated to the primary DCIS based on

mutations andCNAs. Non-clonal recurrences weremore likely to

be in a different breast quadrant and have discordant ER expres-

sion, whereas time to recurrence and patient agewere not signif-

icantly associated with clonality. While we did not examine the

recurrences in the current study to determine clonality, it is likely

that a similar fraction would be identified as ‘‘unrelated.’’ We

anticipate that further refinement and validation of our classifier

will be strengthened by eliminating non-clonal iBEs.

(B and C) Boxplot showing proportion of the genome copy number altered (PGA) by 5-year outcome groups (B) and classifier risk groups (C). p values from

Kruskal-Wallis test. Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range.

(D) Unsupervised clustering of CNA landscape identified eight clusters. Heatmap of genomic segments (log2 copy number) in TBCRC and RAHBT samples.

Covariates indicate ER and HER2 status (RNA-derived) and chromosomes for each segment.

(E) Boxplots of log2 copy numbers across the eight clusters, representing median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range.

(F) GSEA hallmark analysis of DE genes in matched RNA samples by DNA cluster for TBCRC and RAHBT, outcome-associated pathways only. Dot size and color

represent the magnitude and direction of pathway deregulation. Background shading indicates FDR. Effect size and FDR from GSEA algorithm. See also

Figure S3 and Table S4.
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Figure 6. TME analysis

(A) UMAP of DCIS stromal transcriptome colored by four identified clusters.

(B) Heatmap of top 10 upregulated genes for each stromal cluster.

(legend continued on next page)
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In conclusion, we have developed a genomic classifier that

predicts both recurrence and invasive progression, using large,

comprehensively annotated case-control data sets of primary

DCIS. The classifier is composed of both epithelial and stromal

features. Our findings support that progression is a process

that requires both invasive propensity among the DCIS cells

and stromal permissiveness in the TME. We propose this classi-

fier as the basis for a future clinical test to assess outcomes in

patients with primary DCIS to guide a more individualized ther-

apy, based on biologic risk. Future work will include further vali-

dation of the classifier and translation to clinical implementation.

The Breast Pre-Cancer Atlas presented here provides a founda-

tional advancement in the study of precancerous lesions and will

be a valuable resource for years to come, with data available to

the research community through the HTAN portal.
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(C) GSEA hallmark analysis of DE genes in each cluster vs. rest, outcome-associated pathways only. Dot size and color represent the magnitude and direction of

pathway deregulation. Background shading indicates FDR. Effect size and FDR from GSEA algorithm.

(D) MIBI-estimated cell density within clusters. Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range.

(E) Deconvolution analysis by CSx of epithelial and stromal LCM samples grouped by stromal clusters displaying immune cell and fibroblast abundance.

(F) Representative MIBI images of clusters reflecting different fibroblast states and total immune density. Top left: normal-like. Top right: collagen rich (FAP+).

Bottom left: desmoplastic (SMA+). Bottom right: immune dense (CD45 high). H3, histone 3; VIM, vimentin; panCK, pan cytokeratin; SMA, smooth muscle actin;

FAP, fibroblast activated protein.

(G) CSx-inferred cell type distribution between cases with iBEs vs. controls, TBCRC and RAHBT combined. Boxplot represents median, 0.25 and 0.75 quantiles

with whiskers at 1.5x interquartile range. Only cell types with FDR <0.05 shown (Wilcoxon rank-sum test). See also Figures S4–S6 and Table S5.
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pS6 Cell Signaling Technologies Cat# 4858BF; RRID: AB_916156

Granzyme B Abcam Cat# ab219803; RRID: AB_2910576

P63 Cell Signaling Technologies Cat# 39692BF; RRID: AB_2799159

Ki67 Cell Signaling Technologies Cat# 9449BF; RRID: AB_2797703

IDO1 Spring Cat# M5604.C

Anti-Biotin BioLegend Cat# 409002; RRID: AB_10642032

CD31 Abcam Cat# ab216459

PD1 Cell Signaling Technologies Cat# 86163BF; RRID: AB_2728833

CD14 Cell Signaling Technologies Cat# 56082BF; RRID: AB_2799504

CD4 Abcam Cat# ab181724; RRID: AB_2864377

Anti-Alexa488 Thermo Fisher Scientific Cat# A11094; RRID: AB_221544

Collagen 1 Abcam Cat# EPR7785

SMA Abcam Cat# ab242395

COX2 Spring Cat# M3214.C; RRID: AB_1661003

Histone H3 Cell Signaling Technologies Cat# 4499BF; RRID: AB_10544537

ER Abcam Cat# ab205850

PDL1-biotin Cell Signaling Technologies Cat# 13684S; RRID: AB_2687655

Chemicals, peptides, and recombinant proteins

SMARTScribe reverse transcriptase Clontech 639537

SUPERase, In RNase inhibitor Thermo Fisher Scientific AM2694

AMPure XP SPRI bead mix Beckman Coulter A63880

Kapa HiFi HotStart ReadyMix Kapa KK2601

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Robert

West (rbwest@stanford.edu).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Proteinase K, 20 mg/mL NEB P8107S

Proteinase K inhibitor Millipore 537470

dNTP mix, 10 mM ea. Thermo Fisher Scientific R0191

PhiX control library Illumina FC-110-3002

TBS IHC Wash Buffer with Tween 20 Cell Marque Cat#935B-09

PBS IHC Wash Buffer with Tween 20 Cell Marque Cat#934B-09

Target Retrieval Solution, pH 9, (3:1) Agilent (Dako) Cat#S2375

Avidin/Biotin Blocking Kit Biolegend Cat#927301

Gelatin (cold water fish skin) Sigma-Aldrich Cat#G7765-250

Xylene Histological grade Sigma-Aldrich Cat#534056–500

Glutaraldehyde 8% Aqueous Solution EM Grade EMS Cat#16020

Normal Donkey serum Sigma-Aldrich Cat#D9663-10ML

Bovine Albumin (BSA) Fisher Cat#BP1600-100

Centrifugal filters (0.1 mm) Millipore Cat#UFC30VV00

Biological samples

The Resource of Archival Breast

Tissue (RAHBT) cohort, collected at

Washington University in St. Louis.

HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002371.v1.p1

The Translational Breast Cancer

Consortium (TBCRC) 038 cohort

collected at 12 participating sites and

administered by Duke University.

HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002371.v1.p1

Critical commercial assays

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) Illumina 20024906

KAPA HyperPlus Kit Kapa Biosystems #07962428001

SeqCap Adapter Kit A Kapa Biosystems #7141530001

Qubit� dsDNA HS Assay Kit (#) Thermo Fisher Scientific #Q32851

PicoPure DNA Extraction kit Thermo Fisher Scientific #KIT0103

MIBItag Conjugation Kit IONpath Cat#600XXX

ImmPRESS UNIVERSAL (Anti-Mouse/Anti-Rabbit) IgG

KIT (HRP)

Vector Laboratories Cat#MP-7500-15

ImmPACT DAB (For HRP Substrate) Vector Laboratories Cat#SK-4105

Deposited data

TBCRC & RAHBT RNA and DNA sequencing data HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002371.v1.p1

TBCRC & RAHBT metadata HTAN portal (Atlas name:

HTAN Duke)

https://humantumoratlas.org (Atlas name:

HTAN Duke)

RAHBT MIBI imaging data HTAN portal (Atlas name:

HTAN Duke)

https://www.humantumoratlas.org (Atlas

name: HTAN Duke)

Software and algorithms

Data analysis using R R NA

Analysis code for R Mendeley https://data.mendeley.com/datasets/

tbzv5hpvw5/1

ll
OPEN ACCESS Article

e2 Cancer Cell 40, 1521–1536.e1–e7, December 12, 2022

mailto:rbwest@stanford.edu
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v1.p1
https://humantumoratlas.org
https://www.humantumoratlas.org
https://data.mendeley.com/datasets/tbzv5hpvw5/1
https://data.mendeley.com/datasets/tbzv5hpvw5/1


Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA and DNA sequencing data, metadata, and MIBI and H&E imaging data, have been deposited at the HTAN portal and are

publicly available as of the date of publication (HTAN portal: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs002371.v1.p1). For further information see the key resources table.

All original code has been deposited at Mendeley Data and is publicly available as of the date of publication (Mendeley Data:

https://data.mendeley.com/datasets/tbzv5hpvw5/1).

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort collection and sample acquisition
RAHBT cohort

The Resource of Archival Breast Tissue (RAHBT) is a data/tissue resource established by Drs. Allred and Colditz in 2008 focused on

premalignant or benign breast disease. Uniform coding of premalignant lesions assures greater consistency and use of research.

Follow-up through hospital record linkages documents subsequent breast lesions including IBC. The entire study population in-

cludes women ages 18 and older with documented cases of premalignant breast disease (including carcinoma in situ). The study

was approved by the Washington University in St. Louis Institutional Review Board (IRB ID #: 201707090).

Women were identified as eligible through seven primary sources: Washington University School of Medicine Departmental data-

bases (Surgery, Radiation Oncology, Pathology, and Radiology), and the SitemanOncology Services Database (local tumor registry),

the St. Louis Breast Tissue Repository, and the Women’s Health Repository. We reviewed all records, excluded women with cancer

prior to qualifying premalignant lesions and identified 1831 uniquewomenwith DCIS or DCIS and subsequent recurrence. A common

data set with pathologic details, risk factor data, treatment, and unique identifiers was created and used to follow these women for

subsequent breast lesions. Centralized pathology review confirmed 174 cases of DCIS with recurrent lesions. For each case (with

subsequent ipsilateral or contralateral breast events) we matched two controls who remained free from subsequent breast events

based on race, year of diagnosis (+/� 5 years), age at diagnosis (+/� 5 years), and type of definitive surgery (mastectomy or lump-

ectomy). For each DCIS diagnosis we retrieved slides and blocks for pathology review, secured a whole slide image of each sample,

marked for TMA cores, and prepared for laboratory processing. A total of 172 cases and 338 controls were cored for TMAs. Breast

pathology review was completed by Drs. Allred, Warrick, DeSchryver, and Veis.

To define an external validation data set that used identical eligibility criteria to TBCR 038 including year of initial DCIS diagnosis,

we identified an additional set of cases from RAHBT and used comparable laboratory procedures for RNA-seq.

For RAHBT, 97 patients were analyzed by RNA-seq (Table 1). The median age at diagnosis was 53, and median year of diagnosis

2006. Time to recurrence with ipsilateral IBC was 36 months, and to diagnosis of ipsilateral DCIS 46.9 months. For women in the

cohort with no iBEs, median follow-up extended to 141 months. The total number of deaths by any cause was six. Treatment of initial

DCIS ranged from lumpectomy with radiation (66.0%), and no radiation (10.3%) and mastectomy (23.7%). This subset of the RAHBT

cohort was composed of 35.1% African American women.

For RAHBT LCM, 265 patients were analyzed by RNA-seq (Table S1). The median age at diagnosis was 53, and median year of

diagnosis 2002. Time to recurrence with ipsilateral IBC was 80 months, and to diagnosis of ipsilateral DCIS 50 months. For women

in the cohort with no iBEs, median follow-up extended to 111 months. Treatment of initial DCIS ranged from lumpectomy with radi-

ation (52%), and no radiation (18%) and mastectomy (28%). This subset of the RAHBT cohort was composed of 25% African Amer-

ican women.

TBCRC 038 cohort
TBCRC 038 is a retrospectivemulti-center study activated at 12 participating TBCRC (Translational Breast Cancer Consortium) sites,

which identified women treated for ductal carcinoma in situ (DCIS) at one of the enrolling institutions between 01/01/1998 and 02/29/

2016. The TBCRC and the Department of Defense (DOD) approved this study for the collection of archival tissues. Duke served as the

initiating and central site for all data, samples, assays, and analysis. The study was approved by the Duke Health Institutional Review

Board (Protocol ID: Pro00068646) as well as the IRB at each participating institution. Individual sites reviewed medical records to

identify patients eligible for the study.

Study eligibility criteria included: Women aged 40–75 years at diagnosis of DCIS without invasion; no prior treatment for breast

cancer; and definitive surgical excision with no ink on tumor margins and treated with mastectomy, lumpectomy with radiation, or

lumpectomy. Cases (patients with subsequent iBEs) were matched 1:1 to controls with at least 5 years of follow-up without subse-

quent iBEs. Matching was based on year of diagnosis (+/�5 years), age at diagnosis (+/� 5 years), and DCIS nuclear grade (high

grade vs. non-high grade). All cases consisted of initial diagnosis of pure DCIS, with ipsilateral recurrence occurring no less than

12 months from date of primary diagnosis. Clinical data, including treatment data, were collected at each site, and standardized

data points were entered into a web-based portal. Tumor tissue was collected from FFPE blocks and cut into 5um sections. All slides
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were scanned and reviewed centrally by a breast pathologist (AH) to confirm the diagnosis. Tumor tissue marked by the pathologist

was macrodissected for bulk analysis assays.

The 216 patients from the TBCRC cohort analyzed by RNA-seq (Table 1) includes 95 women without iBE after 5 or more years, 66

with DCIS iBEs, and 55 with IBC iBEs. Median time to IBC iBE for this subset was 58 and 40 months to DCIS iBE. The total number of

deaths by any cause was 12. 30% of this subset were African American.

METHOD DETAILS

TMA construction
Qualified DCIS or subsequent lesion slides were assembled for pathology review. The research breast pathologist marked the slides

for best area to core (1mm) for the carcinoma in situ and later event. The TMAs were designed such that cases/controls were as-

signed randomly on the map. The Beecher Tissue Arrayer was used to take a core from the patient donor block and place it in

the designated area of the recipient TMA block. Slides were then cut for research purposes, and stained H&E and unstained slides

were prepared. The TMAs were stored in the St. Louis Breast Tissue Registry Lab at room temperature.

Slide cutting
A TMA cutting breakdown was established to include slides for laser capture microdissection (LCM PEN membrane glass slides)

sequencing, multiplex protein (MIBI high-purity gold-coated slides) staining and charged glass slides for FISH analysis of the

RAHBT TMAs. The order of the slides for the different assays was as follows:

Slide 1–3: FISH/routine IHC – 4 um slices on charged slides.

Slide 4–6: RNA/DNA sequencing – 7 um slices on LCM membrane glass slides.

Slide 7: MIBI analysis – 4 um slices on gold coated slides.

Slide 8–10: FISH/routine IHC – 4 um slices on charged slides.

Slide 11–13: RNA/DNA sequencing – 7 um slices on LCM membrane slides.

Slide 14: MIBI analysis – 4 um slices on gold coated slides.

Slide 15–17: FISH/routine IHC – 4 um slices on charged slides.

Slide 18H&E stained.

Digital H&E generation (scanners)

At Washington University School of Medicine, the H&E original slide and TMA slide for RAHBT was imaged (20x) by Aperio AT2

(Leica). ImageScope provides the software for viewing the slides. Images are stored on secure servers in the Dept of Pathology,

Washington University School of Medicine.

Pathologic analysis and masking
For the TBCRC cohort, whole slide images of the H&E slidemade from the block sourced for DNA and RNAwas reviewed and scored

for grade, presence of necrosis and architecture by a breast pathologist (AH). For the RAHBT LCM cohort, H&E images from the

TMAs were used to score for grade, presence of necrosis and architecture by four breast pathologists (DJV, AH, SS, RBW). Areas

of DCIS and normal tissue from the RAHBT TMAs were annotated and masked for LCM by two breast pathologists (SS and RBW).

Laser capture microdissection
Consecutive sections of tissue microarray blocks were cut and mounted on PEN membrane slides. Slides were dissected immedi-

ately after staining on an Arcturus XT LCM System based on the masked areas. Epithelial and stromal sections were dissected sepa-

rately (Figure S1). Each sample adhere to a CapSure HS LCM Cap (Thermo Fisher #LCM0215). After LCM, the cap was sealed in an

0.5 mL tube (Thermo Fisher #N8010611) and stored at�80�C until library preparation. Thematching epithelial regions in consecutive

slides were dissected for corresponding DNA libraries.

RNA-sequencing (smart-3seq)
Sequencing libraries were prepared according to the Smart-3SEQmethod35 starting from dissected FFPE tissue on an Arcturus LCM

HS Cap, except for the unique P5 index and universal P7 primers. Three control samples were added to each library preparation

batch and sequence batch to allow batch effect analysis. Libraries were pooled together according to qPCRmeasurements and pre-

pared according to the manufacturer’s instructions with a 1% spike-in of the PhiX control library (Illumina #FC-110-3002) and

sequenced on an Illumina NextSeq 500 instrument with a High Output v2.5 reagent kit (Illumina # 20024906).

ER, HER2 status
Clinical ER status (by IHC) was available for 83.3% (180 of 216) of the TBCRC cohort, 83.5% (81 of 97) of the RAHBT cohort, and

46.8% (124 of 265) of the RAHBT LCM cohort.

Additionally, we called ER and HER2 positivity based on mRNA abundance levels of ESR1 and ERBB2, respectively. We applied a

Gaussian mixture model with two components using the mclust R package (v5.4.7).

ll
OPEN ACCESS Article

e4 Cancer Cell 40, 1521–1536.e1–e7, December 12, 2022



PAM50 and IC10
PAM50 subtypes were called using the genefu36 v2.22.1 R package. We compared the PAM50 subtypes called by genefu against

subtypes called adjusting for the expected proportion of ER + samples, as implemented in.19 We found both methods to be highly

concordant (>96% concordance). We compared the correlation of DCIS and IBC samples to the PAM50 centroids within the genefu

R package using Spearman’s correlation. We also compared the silhouette widths based on Euclidean distances of the PAM50 sub-

types to the de novoDCIS subtypes using the cluster R package (v2.1.1). IC10 subtypes were called using the iC10 (v1.5) R package.

PAM50 subtypes were called in TBCRC and RAHBT separately, using the same protocols, given the differences in measurement

techniques used in the two cohorts.

To compare PAM50 centroids in DCIS to TCGA: The TCGA cohort was downsampled to match the size of the DCIS cohort. The

downsampling was repeated 1,000 times, and the median correlation for each of the 1,000 iterations was compared to the median

DCIS correlations.

Differential abundance analyses
Differential abundance analysis was performed using the R package DESeq2 v1.30.137 with default options. P-values were adjusted

for multiple testing using the Benjamini-Hochberg method. FDR<0.05 was considered significant for all DESeq2 analyses. Reads

matrices were VST normalized for downstream analyses.

Unsupervised clustering: Non-negative matrix factorization
We identified RNA andCNA based clusters by non-negative matrix factorization using the NMFR package v0.23.0.38 Each NMF rank

was run 30 times to evaluate cluster stability. We comprehensively evaluated 2–10 clusters for each data type and evaluated cluster

fit by cophenetic and silhouette values. RNA clusters were first discovered in TBCRC and replicated in RAHBT. We evaluated repli-

cation by quantifying the concordance of de novo clusters identified in RAHBT vs clusters determined from centroids identified

in TBCRC.

CNA clusters were discovered in TBCRC and RAHBT jointly and compared against clusters identified in TBCRC and RAHBT indi-

vidually to ensure robustness.

CIBERSORTx
Using single-cell RNA-seq datasets, a breast specific signature matrix was built to resolve proportions of tumor, fibroblasts, endo-

thelial and immune cells from bulk RNA-seq data.39 scRNAseq data was downloaded from Gene Expression Omnibus database

(GEO data repository accession numbers GSE114727, GSE114725). Normalized counts were obtained using Seurat R package

(v3.2.0), and used as single cell matrix input alongside with their cell type identities (code available: https://cibersortx.stanford.

edu/, default parameters for ‘‘Create Signature Matrix/ scRNAseq input data’’).40 The resultant signature matrix contained 3484

genes and allowed to resolve different immune cell types, including B, CD8 T, CD4 T, NKT, NK, mast cells, neutrophils, monocytes,

macrophages and dendritic cells (code available https://cibersortx.stanford.edu/, ‘‘Impute Cell Fractions/Enable batch correction

S-mode’’, and default parameters). The signature matrix was first in-silico validated. In order to test the accuracy of the signature

matrix, a set of samples (1/10 of each type) from the same scRNAseq dataset was reserved to build a synthetic matrix of bulk

RNA-seq data. By mixing different proportions of single cell transcripts, the synthetic bulk was used to predict cell type proportions

and subsequently correlated with the true proportions used to build the synthetic mix. Pearson’s coefficient was >0.75 in all the

cases, and most >0.9. The aforementioned matrix was used to deconvolve the LCM RNA-seq samples and to compare CSx-esti-

mated cell abundance with MIBI-identified cell types. Cell abundance between groups was compared by Wilcoxon rank sum test

followed by Benjamini-Hochberg correction for multiple testing.

Shared nearest neighbor clustering
LCM stromal samples from RAHBT were classified using the Shared Nearest Neighbor clustering method implemented in the Seurat

R package (v3.2.0). Data was normalized by negative binomial regression (sctransform R package, v0.3.2, variable.feature.n = ‘‘all.-

genes’’). The first 15 principal components were used to identify the clusters and 16 different resolutions were compared, selecting

resolution 0.75 and four clusters as the final solution. Positive markers were selected at a minimum fraction of 0.25 and the resultant

gene list was used to further characterize each cluster by gene ontology and KEGG pathway analysis, implemented in clusterProfiler

R package (version 3.18.1).

Pathway & gene set enrichment analyses
Gene set enrichment analyses were performed using fgsea R package (v1.12.0) based on theMSigDBHallmark pathways v7.4,.41 All

genes from differential abundance analyses were included and were ranked by their signed adjusted P-values. Pathways were

considered enriched if adjusted P-values<0.05. We evaluated pathway concordance across the DCIS subtypes using a hypergeo-

metric test.

Single sample gene set variation analysis was performed using the GSVA R package42 (v1.38.2) using default parameters.
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Outcome analysis
Associations with time to event were quantified usingCox Proportional Hazardmodel correcting for treatment as indicated in the text.

To standardize follow-up across TBCRC and RAHBT, we censored the follow-up time at 250 months, the maximum follow-up time in

TBCRC. Kaplan-Meier plots as implemented in the R packages survival (v3.2.10) and survminer (v0.4.9) were used to visualize

outcome differences.

The 812 gene classifier was built using the cforest implementation of Random Forest in the Caret (v6.0–91) R package using

default parameters. The TBRCR cohort was used as the training cohort and the model was tested on the RAHBT cohort. Hyper-

parameters were tuned on the training cohort using four-fold cross validation. The mtry parameters 5, 20, 50, 100, 200, 500, and

800 were tested and the optimal mtry selected was 5. Accuracy of the classifier was assessed using ROC curve, Precision, Recall,

and F1 score.

Breast cancer data (BRCA) from TCGAwas downloaded from https://www.cancer.gov/tcga. A total of 1064 samples with available

follow-up information was used to test the 812 gene classifier towards progression-free survival and overall survival as defined in the

TCGA-BRCA metadata.

RNA for the TCGA samples was normalized using the same protocols as the DCIS RNA-sequencing (TBCRC and RAHBT cohorts,

above). The accuracy of the classifier in the TCGA cohort was assessed using ROC curve, Precision, Recall, and F1 score.

DNA-sequencing
Genomic DNA was isolated from LCM FFPE cells using PicoPure DNA Extraction kit (Thermo Fisher Scientific # KIT0103). 50ul

lysis buffer with Proteinase K were added to each sample and incubated at 65�C overnight. After inactivating proteinase K, the

genomic DNA was cleaned up with AMPure XP beads at 3:1 ratio (Beckman Coulter# A63880) and eluted in the 10mM Tris-

HCl (pH8.0).

DNA Libraries were constructedwith KAPAHyperPlus Kit (KapaBiosystems #07962428001). Barcode adapters were used formul-

tiplexed sequencing of libraries with SeqCap Adapter Kit A (Kapa Biosystems #7141530001). DNA libraries were amplified by 19 PCR

cycles. AMPure XP beads were used for the size selection and cleaning up. DNA libraries were eluted in the 30 mL 10mM Tris-

HCl (pH8.0).

Library size distribution was assessed on an Agilent 2100 Bioanalyzer using the DNA 1000 assay and the concentration was

measured by Qubit� dsDNA HS Assay Kit (Thermo Fisher Scientific # Q32851). For each lane, 12 samples were pooled and

sequenced by Novogene (Sacramento, CA, US) on the Illumina HiSeq Platform, collecting 110G per 275M reads output of paired-

end reads of 150 bp length.

Identification of recurrent CNAs (GISTIC)
Recurrent CNAs were identified from purity-adjusted segment CNA calls from QDNASeq for 228 DCIS samples using GISTIC2

v2.0.2343 run with the following parameters: -ta 0.3 -td 0.3 -qvt 0.05 -brlen 0.98 -conf 0.95 -armpeel 1 -res 0.01 -rx 0. To ensure

CNAs were not biased by sequencing depth, recurrent CNAs significantly associated (FDR<0.05) with the number of uniquely map-

ped reads were filtered out. Associations were quantified by Mann-Whitney test. The number of uniquely mapped reads was deter-

mined from samtools flagstat (v1.9).

MIBI
We used a MIBI panel consisting of 37 metal-conjugated antibodies that capture 16 different cell types including epithelial, fibro-

blasts, and immune cell types. We took tissue sections from adjacent sections to those used for RNA-seq to spatially align the

same ducts for both MIBI and RNA. For full details of the MIBI methods, see the companion paper.22 Briefly, antibodies were con-

jugated to isotopic metal reporters. Tissues were sectioned (5mm section thickness) from tissue blocks on gold and tantalum-sput-

tered microscope slides. Imaging was performed using a MIBI-TOF instrument with a Hyperion ion source.

Multiplexed image sets were extracted, slide background-subtracted, denoised, and aggregate filtered. Nuclear segmentation

was performed using an adapted version of the DeepCell CNN architecture. Single cell data was extracted for all cell objects and

area normalized. The FlowSOM R package v1.22.044 was used to assign each cell to one of five major cell lineages (tumor, myoe-

pithelial, fibroblast, endothelial, immune). Immune cells were subclustered to delineate B cells, CD4+ T cells, CD8+ T cells, mono-

cytes, MonoDC cells, DC cells, macrophages, neutrophils, mast cells, double-negative CD4�CD8� T cells, and HLADR+ APC cells.

Tumor and fibroblast cells were similarly sub clustered to reveal phenotypic subsets. A total of 16 cell populations were quantified

and analyzed. For full details of the MIBI methods, see the companion paper.22

Data visualization
Boxplots, heatmaps, scatterplots and barplots were generated using the BoutrosLab.plotting.general R package v6.0.3,45 or the R

packages ggplot2 (v3.3.3, boxplots), corrplot (v0.84, scatterplots), and ComplexHeatmap (v.2.6.2, heatmaps). UMAPs were gener-

ated using the umap (v0.2.7.0) R package with the number of genes indicated in the text. Mosaic plots were generated using the vcd

(v1.4.8) R package.
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq processing
RNA sequencing data was processed with 3SEQtools (https://github.com/jwfoley/3SEQtools). Single-end Illumina FASTQ files were

generated from NextSeq BCL files with bcl2fastq (v2.20.0.422) and then aligned to reference hg38 with STAR aligner (v2.7.3a). Sam-

ples that did not meet a minimum threshold of uniquely aligned reads were filtered out. The samples in this study averaged 1.11

million uniquely aligned reads. Gene expression matrices of raw and normalized read counts were produced from BAM files with fea-

tureCounts (v1.6.4) of the Subread package (v2.4.2) and GENCODE Release 33.

Read counts were normalized using the variance stabilizing transformation (VST) implemented in the R package, DESeq2

(v1.30.1).37 The VST normalization procedure normalizes for library size and returns a matrix that is approximately homoscedastic.

The same normalization method was used for both the TBCRC and RAHBT cohorts individually.

DNA-seq processing
Low-pass WGS data were preprocessed using the Nextflow-base pipeline Sarek46 v2.6.1 with BWA v0.7.17 for sequence alignment

to the reference genome GRCh38/hg38 and GATK47 v4.1.7.0 to mark duplicates and calibration. The recalibrated reads were further

processed and filtered for mappability, GC content using the R/Bioconductor quantitative DNA-sequencing (QDNAseq) v1.22.0 with

R v3.6.0. For QDNAseq, 50-kb bins were generated from (http://doi.org/10.5281/zenodo.4274556). We kept only autosomal se-

quences after filtering due to low-depth mappability and GC correction. We used the QDNAseq corrected output and segmented

for CN analysis using the circular binary segmentation (CBS) algorithm from DNAcopy R/Bioconductor package v1.60.0. Copy num-

ber aberrations were called using CGHcall v2.48.0.48 The R/Bioconductor package ACE v1.4.049 was used to estimate purity and

ploidy. Proportion of the genome copy number altered (PGA) was calculated based on CNAs with |log2 ratio| > 0.3 based on the

following:

PGA =
number of bases in CNA

total number of bases profiled

Statistical analyses
We used Mann-Whitney U test to compare continuous distributions between two groups, as specified in the text. We used the

Kruskal-Wallis test to compare continuous values between three groups. All statistical analyses were implemented in the R statistical

language (v3.6.1). P-valueswere corrected formultiple hypothesis testing viaBonferroni (when <10 independent tests) or Benjamini &

Hochberg (when >10 independent tests).
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