40 research outputs found

    Phase-Tunable Temperature Amplifier

    Full text link
    Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier. Taking advantage of a recent thermoelectric effect discovered in spin-split superconductors coupled to a spin-polarized system, by a temperature gradient we generate the magnetic flux controlling the transport through a temperature biased SQUIPT. By employing commonly used materials and a geometry compatible with state-of-the-art nano-fabrication techniques, we simulate the behavior of the temperature amplifier and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This device concept could represent a breakthrough in coherent caloritronic devices, and paves the way for applications in radiation sensing, thermal logics and quantum information.Comment: 7 pages, 3 figure

    Phase-Tunable Thermal Logic: Computation with Heat

    Full text link
    Boolean algebra, the branch of mathematics where variables can assume only true or false value, is the theoretical basis of classical computation. The analogy between Boolean operations and electronic switching circuits, highlighted by Shannon in 1938, paved the way to modern computation based on electronic devices. The grow of computational power of such devices, after an exciting exponential -Moore trend, is nowadays blocked by heat dissipation due to computational tasks, very demanding after the chips miniaturization. Heat is often a detrimental form of energy which increases the systems entropy decreasing the efficiency of logic operations. Here, we propose a physical system able to perform thermal logic operations by reversing the old heat-disorder epitome into a novel heat-order paradigm. We lay the foundations of heat computation by encoding logic state variables in temperature and introducing the thermal counterparts of electronic logic gates. Exploiting quantum effects in thermally biased Josephson junctions (JJs), we propound a possible realization of a functionally complete dissipationless logic. Our architecture ensures high operation stability and robustness with switching frequencies reaching the GHz

    High operating temperature in V-based superconducting quantum interference proximity transistors

    Full text link
    Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux-to-voltage (up to 0.52 mV/Φ0\ \textrm{mV}/\Phi_0) and flux-to-current (above 12 nA/Φ0\ \textrm{nA}/\Phi_0) transfer functions, with the best estimated flux sensitivity ∼\sim2.6 μΦ0/Hz\ \mu\Phi_0/\sqrt{\textrm{Hz}} reached under fixed voltage bias, where Φ0\Phi_0 is the flux quantum. The interferometers operate up to Tbath≃T_\textrm{bath}\simeq 2 K \textrm{K}, with an improvement of 70%\% of the maximal operating temperature with respect to early SQUIPTs design. The main features of the V-based SQUIPT are described within a simplified theoretical model. Our results open the way to the realization of SQUIPTs that take advantage of the use of higher-gap superconductors for ultra-sensitive nanoscale applications that operate at temperatures well above 1 K.Comment: Published version with Supplementary Informatio

    Phase-driven charge manipulation in Hybrid Single-Electron Transistor

    Get PDF
    Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics

    Thermal superconducting quantum interference proximity transistor

    Full text link
    Superconductors are known to be excellent thermal insulators at low temperature owing to the presence of the energy gap in their density of states (DOS). In this context, the superconducting \textit{proximity effect} allows to tune the local DOS of a metallic wire by controlling the phase bias (φ\varphi) imposed across it. As a result, the wire thermal conductance can be tuned over several orders of magnitude by phase manipulation. Despite strong implications in nanoscale heat management, experimental proofs of phase-driven control of thermal transport in superconducting proximitized nanostructures are still very limited. Here, we report the experimental demonstration of efficient heat current control by phase tuning the superconducting proximity effect. This is achieved by exploiting the magnetic flux-driven manipulation of the DOS of a quasi one-dimensional aluminum nanowire forming a weal-link embedded in a superconducting ring. Our thermal superconducting quantum interference transistor (T-SQUIPT) shows temperature modulations up to ∼16\sim 16 mK yielding a temperature-to-flux transfer function as large as ∼60\sim 60 mK/Φ0\Phi_0. Yet, phase-slip transitions occurring in the nanowire Josephson junction induce a hysteretic dependence of its local DOS on the direction of the applied magnetic field. Thus, we also prove the operation of the T-SQUIPT as a phase-tunable \textit{thermal memory}, where the information is encoded in the temperature of the metallic mesoscopic island. Besides their relevance in quantum physics, our results are pivotal for the design of innovative coherent caloritronics devices such as heat valves and temperature amplifiers suitable for thermal logic architectures.Comment: 8 pages, 4 figure

    Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection

    Get PDF
    Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, scalable and fast superconducting memories are not implemented. Here, we propose a fully superconducting memory cell based on the hysteretic phase-slip transition existing in long aluminum nanowire Josephson junctions. Embraced by a superconducting ring, the memory cell codifies the logic state in the direction of the circulating persistent current, as commonly defined in flux-based superconducting memories. But, unlike the latter, the hysteresis here is a consequence of the phase-slip occurring in the long weak link and associated to the topological transition of its superconducting gap. This disentangles our memory scheme from the large-inductance constraint, thus enabling its miniaturization. Moreover, the strong activation energy for phase-slip nucleation provides a robust topological protection against stochastic phase-slips and magnetic-flux noise. These properties make the Josephson phase-slip memory a promising solution for advanced superconducting classical logic architectures or flux qubits

    Topological Josephson Heat Engine

    Full text link
    The promise of fault-tolerant quantum computing has made topological superconductors the focus of intense research during the past decade. In this context, topological Josephson junctions based on nanowires or on topological insulators provide an alternative route for probing topological superconductivity. As a hallmark of their topological nature, such junctions exhibit a ground-state fermion parity that is 4Ï€4\pi-periodic in the superconducting phase difference Ï•\phi. Finding unambiguous experimental evidence for this 4Ï€4\pi-periodicity still proves a difficult task, however. Here we propose a topological Josephson heat engine implemented by a Josephson-Stirling cycle as an alternative thermodynamic approach to test the ground-state parity. Using a Josephson junction based on a quantum spin Hall (QSH) insulator, we show how the thermodynamic cycle can be used to test the 4Ï€4\pi-periodicity of the topological ground state and to distinguish between parity-conserving and non-parity-conserving engines. Interestingly, we find that parity conservation generally boosts both the efficiency and power of the topological heat engine with respect to its non-topological counterpart. Our results, applicable not only to QSH-based junctions but also to any topological Josephson junction, demonstrate the potential of the intriguing and fruitful marriage between topology and coherent thermodynamics.Comment: 16 pages, 7 figure
    corecore