171 research outputs found
Towards personalized medicine: Non-coding rnas and endometrial cancer
Endometrial cancer (EC) is the most frequent female cancer associated with excellent prognosis if diagnosed at an early stage. The risk factors on which clinical staging is based are constantly updated and genetic and epigenetic characteristics have recently been emerging as prognostic markers. The evidence shows that non-coding RNAs (ncRNAs) play a fundamental role in various biological processes associated with the pathogenesis of EC and many of them also have a prognosis prediction function, of remarkable importance in defining the therapeutic and surveillance path of EC patients. Personalized medicine focuses on the continuous updating of risk factors that are identifiable early during the EC staging to tailor treatments to patients. This review aims to show a summary of the current classification systems and to encourage the integration of various risk factors, introducing the prognostic role of non-coding RNAs, to avoid aggressive therapies where not necessary and to treat and strictly monitor subjects at greater risk of relapse
Contrast Agents during Pregnancy: Pros and Cons When Really Needed
Many clinical conditions require radiological diagnostic exams based on the emission of different kinds of energy and the use of contrast agents, such as computerized tomography (CT), positron emission tomography (PET), magnetic resonance (MR), ultrasound (US), and X-ray imaging. Pregnant patients who should be submitted for diagnostic examinations with contrast agents represent a group of patients with whom it is necessary to consider both maternal and fetal effects. Radiological examinations use different types of contrast media, the most used and studied are represented by iodinate contrast agents, gadolinium, fluorodeoxyglucose, gastrographin, bariumsulfate, and nanobubbles used in contrast-enhanced ultrasound (CEUS). The present paper reports the available data about each contrast agent and its effect related to the mother and fetus. This review aims to clarify the clinical practices to follow in cases where a radiodiagnostic examination with a contrast medium is indicated to be performed on a pregnant patient
Serum high mobility group box-1 and osteoprotegerin levels are associated with peripheral arterial disease and critical limb ischemia in type 2 diabetic subjects.
BACKGROUND: High mobility group box-1 (HMGB-1) is a nuclear protein also acting as inflammatory mediator, whilst osteoprotegerin (OPG), member of tumor necrosis factor receptor superfamily, is indicated as marker of vascular calcification. Peripheral artery disease (PAD) and type 2 diabetes (T2D) are clinical conditions characterized by elevated serum inflammatory markers and vascular calcification enhancement. The aim of this study was to investigate the potential role of HMGB-1, OPG and several inflammatory mediators such as C-reactive protein (HsCRP), tumor necrosis factor-alpha and interleukin-6 (IL-6) on the presence and severity of peripheral artery disease in patients with T2D.
METHODS: In this retrospective observational study, we have analyzed HMGB-1, OPG and inflammatory cytokines serum levels in 1393 type 2 diabetic patients with PAD and without PAD (WPAD).
RESULTS: HMGB-1 (7.89 \ub1 15.23 ng/mL), OPG (6.54 \ub1 7.76 pmol/L), HsCRP (15.6 \ub1 14.4 mg/L) and IL-6 (56.1 \ub1 28.6 pg/mL) serum levels were significantly higher in patients with PAD than in those WPAD (3.02 \ub1 8.12 ng/mL, P \u2c2 0.001; 2.98 \ub1 2.01 pmol/L, P < 0.001; 7.05 \ub1 4.4 mg/L, P < 0.001; 37.5 \ub1 20.2 pg/mL, P < 0.001 respectively). Moreover HMGB-1 (P < 0.001), OPG (P < 0.001), HsCRP (P < 0.001) and IL-6 (P < 0.001) serum levels were positively correlated with clinical severity of PAD. HMGB-1 (adjusted OR 12.32; 95% CI 3.56-23.54, P = 0.023) and OPG (adjusted OR 3.53; 95% CI 1.54-6.15, P = 0.019) resulted independent determinants of PAD in patients with T2D after adjusting for the conventional cardiovascular risk factor and established inflammatory mediators.
CONCLUSIONS: In T2D patients HMGB-1 and OPG serum levels are higher in patients affected by PAD and independently associated with its occurrence and clinical severity
A multi-parameter approach to measurement of spontaneous myogenic contractions in human stomach: Utilization to assess potential modulators of myogenic contractions
Electrical slow waves, generated by interstitial cells of Cajal (ICC), cause spontaneous contractions of human stomach. Software was developed to measure muscle tone and eleven different parameters defining these contractions in human stomach, displaying data as radar plots. A pilot study assessed the effects of potential modulators, selected from among compounds known to influence ICC activity; n=4-7 each concentration tested/compound. Human distal stomach (corpus-antrum) muscle strips were suspended in tissue baths for measuring myogenic (non-neuronal) contractions in the presence of tetrodotoxin (10-6M). Initial characterization: Contractions (amplitude 4±0.4mN, frequency 3±0.1min-1, n=49) were unchanged by ꭃ-conotoxin GVIA (10-7M) or indomethacin (10-6M) but abolished by nifedipine (10-4M). Carbachol (10-7M) increased contraction rate and amplitude; 10-6-10-5M increased tone and caused large, irregular contractions. [Ca2+]imodulators: Ryanodine (10-5-10-4M) increased muscle tone accompanied by inhibition of myogenic contractions. Xestospongin-C (10-6M; IP3 channel inhibitor) had no effects. SERCA pump inhibitors, 2-APB and cycloplazonic acid (10-5-10-4M) increased tone and myogenic contraction amplitude before abolishing contractions; thapsigargin was weakly active. CaCC blockers: MONNA and CaCCinh-A01 had little-or-no effects on tone but reduced myogenic contractions; MONNA (10-4M) was more effective, reducing amplitude (77.8±15.2%) and frequency. CaV3.1/3.2/3.3 channel block: Mibefradil reduced tone and myogenic contraction amplitude (pIC50 4.8±0.9). Inward-rectifying K+-channel inhibitor: E-4031 (10-4M) increased contraction duration (17.4±5.8%). Conclusions: (1) Measurement of multiple parameters of myogenic contractions identified subtle differences between compounds, (2) only E-4031 and CaCC blockers influenced myogenic contractions, not muscle tone, (3) studies are needed with compounds with known and/or improved selectivity/potency for human targets affecting ICC functions
Sonic Hedgehog Gene Delivery to the Rodent Heart Promotes Angiogenesis via iNOS/Netrin-1/PKC Pathway
We hypothesized that genetic modification of mesenchymal stem cells (MSCs) with Sonic Hedgehog (Shh) transgene, a morphogen during embryonic development and embryonic and adult stem cell growth, improved their survival and angiogenic potential in the ischemic heart via iNOS/netrin/PKC pathway.MSCs from young Fisher-344 rat bone marrow were purified and transfected with pCMV Shh plasmid ((Shh)MSCs). Immunofluorescence, RT-PCR and Western blotting showed higher expression of Shh in (Shh)MSCs which also led to increased expression of angiogenic and pro-survival growth factors in (Shh)MSCs. Significantly improved migration and tube formation was seen in (Shh)MSCs as compared to empty vector transfected MSCs ((Emp)MSCs). Significant upregulation of netrin-1 and iNOS was observed in (Shh)MSCs in PI3K independent but PKC dependent manner. For in vivo studies, acute myocardial infarction model was developed in Fisher-344 rats. The animals were grouped to receive 70 microl basal DMEM without cells (group-1) or containing 1x10(6) (Emp)MSCs (group-2) and (Shh)MSCs (group-3). Group-4 received recombinant netrin-1 protein injection into the infarcted heart. FISH and sry-quantification revealed improved survival of (Shh)MSCs post engraftment. Histological studies combined with fluorescent microspheres showed increased density of functionally competent blood vessels in group-3 and group-4. Echocardiography showed significantly preserved heart function indices post engraftment with (Shh)MSCs in group-3 animals.Reprogramming of stem cells with Shh maximizes their survival and angiogenic potential in the heart via iNOS/netrin-1/PKC signaling
A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study
The ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV1/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV1/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV1/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV1/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV1 and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV1/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation
Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population
Background: Carotid atherosclerosis represents one of the complications of diabetes mellitus. In particular, plaque instability contributes to disease progression and stroke incidence. High mobility group box-1 (HMGB1) is a nuclear protein involved in promotion and progression of atherosclerosis and cardiovascular diseases. The aim of this study was to analyze the relationship between HMGB1 serum levels, main inflammatory cytokines, the presence of internal carotid stenosis and unstable plaque in a diabetic population. Research design and methods: We studied 873 diabetic patients, including 347 patients with internal carotid artery stenosis (ICAS) who underwent carotid endarterectomy and 526 diabetic patients without internal carotid artery stenosis (WICAS). At baseline, HMGB1 and the main inflammatory cytokines serum levels were evaluated. For ICAS patients, the histological features of carotid plaque were also collected to differentiate them in patients with stable or unstable atherosclerotic lesions. Results: We found that HMGB1 serum levels, osteoprotegerin, high-sensitivity C-reactive protein, tumor necrosis factor-alpha and interleukin-6, were significantly higher in diabetic ICAS patients compared to diabetic WICAS patients. Among ICAS patients, individuals with unstable plaque had higher levels of these cytokines, compared to patients with stable plaque. A multivariable stepwise logistic regression analysis showed that HMGB1 and osteoprotegerin remained independently associated with unstable plaque in ICAS patients. Conclusions: The present study demonstrated that HMGB1 is an independent risk factor for carotid plaque vulnerability in an Italian population with diabetes mellitus, representing a promising biomarker of carotid plaque instability and a possible molecular target to treat unstable carotid plaques and to prevent stroke
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
- …