5 research outputs found

    Proposição de um metamodelo para a representação do processo de combustão de carvão em um tubo de queda livre baseado em análise numérica

    Get PDF
    O presente trabalho apresenta uma metodologia de avaliação dos processos de combustão em um Drop Tube Furnace– DTF. O processo de combustão é modelado em um software comercial de Mecânica de Fluidos Computacional - CFD e posteriormente ampliado com o auxílio da metodologia estatística de Projeto de Experimentos – DoE. As simulações são baseadas em parâmetros de operação reais de um DTF associado a dados experimentais disponíveis na literatura, considerando a reação de combustão de carvão. O modelo CFD permite observar o perfil de escoamento, temperatura das partículas de carvão, etapas de devolatilização e oxidação do carbono residual, composição dos gases de combustão, taxa de queima de partículas (burnout), além dos efeitos da fuligem e da radiação térmica no processo. Os resultados do CFD mostram o efeito da queima e da fuligem na temperatura da chama, as taxas de burnout de acordo com o tempo de permanência e a temperatura no reator, e quantificam as emissões de CO e NOx. Os desvios médios entre os resultados calculados e os dados experimentais da literatura para temperatura e burnout são de 1,65 % e 3,2 %, respectivamente, obtidos com o modelo em CFD, e de 6,02 % e 3,5 % para o metamodelo. DoE é aplicado aos fatores de controle mais relevantes para as faixas de operação, como: excesso de ar (120 à 585 %), umidade (1,5 à 12 %) e teor de cinzas (1,5 à 10 %) do combustível. Os fatores de resposta observados são temperatura dos gases, burnout, carbono residual (Char), fração de cinza residual (Ash Residual), NOx e fuligem (Soot). O DTF é dividido em 7 volumes adjacentes para os quais são construídos metamodelos algébricos que permitem o cálculo rápido da fração mássica de cinza na partícula, carbono residual, fuligem e NOx. O desvio médio entre os resultados do metamodelo e dos dados experimentais é de 6,02 % para a temperatura dos gases, 3,58 % para o teor de cinzas residuais e 0,21% para a fuligem. Desvios maiores são encontrados nas regiões intermediárias do DTF. As duas abordagens numéricas são capazes de caracterizar o processo de combustão com uma boa concordância em relação aos dados experimentais usados como base.The present work presents a methodology for the evaluation of combustion processes in a Drop Tube Furnace - DTF. The combustion process is modeled by a commercial Computational Fluid Mechanics (CFD) software and the study is further expanded with the aid of the Experiment Design statistical methodology (DoE). Simulations are based on actual operating parameters of a DTF associated with experimental data available in the literature, considering the coal combustion reaction. The CFD model allows to observe the flow profile, carbon and biomass particle temperature, residual carbon devolatization and oxidation steps, flue gas composition, burnout rate, as well as the effects of soot and process thermal radiation. CFD results show the effect of burning and soot on flame temperature, burnout rates according to residence time and reactor temperature, and quantify CO and NOx emissions. The average deviations of the results for temperature and burnout to the calculated values and experimental literature data for the same reactor are 1.65% and 3.2%, respectively, obtained with the CFD model, and 6.02% and 3.5% for the metamodel. DoE methodology is applied to control factors within the operating ranges of excess air (120 to 585%), fuel humidity (1.5 to 12%) and ash content (1.5 to 10%), identified as the most relevant to the combustion process. The observed response factors are gas temperature, burnout, residual carbon (Char), residual ash fraction (Residual Ash), NOx and soot, displayed as response surfaces. DTF is divided into 7 adjoining volumes for which algebraic metamodels are constructed allowing for the quick prediction of ash mass fraction, residual carbon, soot and NOx. Metamodel to experimental data average deviation is 6.02% for gas temperature, 3.58% for particulate residual ash and 0.21% for soot. Larger deviations are found in the intermediate regions of the DTF. Both numerical approaches are able to characterize the combustion process with good agreement

    Análise energética e exergética da cadeia do gás natural líquido e a integração do processo de regaseificação com ciclos combinados de potência

    No full text
    Este trabalho estuda a cadeia do Gás Natural Líquido (GNL) e propõe utilizações para a recuperação da energia do processo de regaseificação em ciclos de potência acoplados. Primeiramente, aborda a cadeia de abastecimento do GNL, identificando e quantificando os pontos consumidores de energia, destruidores de exergia e a reevaporação de massa ocorrida quando o metano esta na fase líquida. Posteriormente, avaliam-se as possibilidades do aproveitamento energético do processo de regaseificação, que ocorre no final dessa cadeia. Trata-se da busca por ciclos térmicos mais eficientes e aumentar o aproveitamento do trabalho reversível dos sistemas, abordando três alternativas de plantas de potência para operarem acopladas ao fornecimento de GNL, com benefício mútuo para ambos os processos: promoção da regaseificação do GNL sem energia auxiliar e aumento da eficiência da planta de potência. O ciclo selecionado para a integração entre as plantas foi o (CHP) Brayton-Rankine com três formas diferentes de acoplamento. Os resultados obtidos mostram que 14,81% da energia contida no combustível na entrada da planta de liquefação é perdida ou consumida nos processos que envolvem a cadeia. Quando essa cadeia é acoplada a um ciclo de potência, obteve-se uma recuperação da energia gasta no processo de regaseificação que reduz a perda de energia para 12,65%. Pelo lado da planta de potência, a eficiência energética de um ciclo combinado operando sem estar acoplado à regaseificação do GNL é de 49,68%, com destruição de exergia de 1078,0 kJ/kg. Dependendo do tipo de acoplamento proposto, o rendimento subiu para até 61,53%, com conseqüente redução de destruição de exergia.This work studies the chain of Liquefied Natural Gas (LNG) and suggests its use for recovery energy in the process of regasification connected with cycles of power. First, it approaches the chain of supply chain of the LNG, identifies and quantifies the energy demand points, destruction of exergy and the reevaporation of mass occurred when the methane is liquid phase. After, the possibilities of the energy recovery of the regasification process are evaluated, that occurs in the end of this chain. The work searches for more efficient thermal cycles and the increase the recovery of the reversible work of the systems. Three alternatives are evaluated of power plants to operate connected to the LNG regasification, with mutual benefit for both the processes: promotion of the regasification of the LNG without energy auxiliary and increase the efficiency of the power plant. The cycle selected for the integration between the plants was (CHP) Brayton-Rankine with three different forms of coupling. The results show that 14.81% of the energy contained in the fuel in the entrance of the liquefaction plant are lost or consumed in the processes that involve the chain. When this chain is connected to a power cycle, the recovery of the energy spent in the regasification process reduces the loss of energy for 12,65%. For the side of the power plant, the energy efficiency of the combined cycle operating without connected to the regasification of the LNG is 49,68%, with destruction of exergy of 1078,0 kJ/kg. Depending on the type of considered coupling, the energy efficiency is 61,53%, with consequent reduction of destruction exergy

    Análise energética e exergética da cadeia do gás natural líquido e a integração do processo de regaseificação com ciclos combinados de potência

    No full text
    Este trabalho estuda a cadeia do Gás Natural Líquido (GNL) e propõe utilizações para a recuperação da energia do processo de regaseificação em ciclos de potência acoplados. Primeiramente, aborda a cadeia de abastecimento do GNL, identificando e quantificando os pontos consumidores de energia, destruidores de exergia e a reevaporação de massa ocorrida quando o metano esta na fase líquida. Posteriormente, avaliam-se as possibilidades do aproveitamento energético do processo de regaseificação, que ocorre no final dessa cadeia. Trata-se da busca por ciclos térmicos mais eficientes e aumentar o aproveitamento do trabalho reversível dos sistemas, abordando três alternativas de plantas de potência para operarem acopladas ao fornecimento de GNL, com benefício mútuo para ambos os processos: promoção da regaseificação do GNL sem energia auxiliar e aumento da eficiência da planta de potência. O ciclo selecionado para a integração entre as plantas foi o (CHP) Brayton-Rankine com três formas diferentes de acoplamento. Os resultados obtidos mostram que 14,81% da energia contida no combustível na entrada da planta de liquefação é perdida ou consumida nos processos que envolvem a cadeia. Quando essa cadeia é acoplada a um ciclo de potência, obteve-se uma recuperação da energia gasta no processo de regaseificação que reduz a perda de energia para 12,65%. Pelo lado da planta de potência, a eficiência energética de um ciclo combinado operando sem estar acoplado à regaseificação do GNL é de 49,68%, com destruição de exergia de 1078,0 kJ/kg. Dependendo do tipo de acoplamento proposto, o rendimento subiu para até 61,53%, com conseqüente redução de destruição de exergia.This work studies the chain of Liquefied Natural Gas (LNG) and suggests its use for recovery energy in the process of regasification connected with cycles of power. First, it approaches the chain of supply chain of the LNG, identifies and quantifies the energy demand points, destruction of exergy and the reevaporation of mass occurred when the methane is liquid phase. After, the possibilities of the energy recovery of the regasification process are evaluated, that occurs in the end of this chain. The work searches for more efficient thermal cycles and the increase the recovery of the reversible work of the systems. Three alternatives are evaluated of power plants to operate connected to the LNG regasification, with mutual benefit for both the processes: promotion of the regasification of the LNG without energy auxiliary and increase the efficiency of the power plant. The cycle selected for the integration between the plants was (CHP) Brayton-Rankine with three different forms of coupling. The results show that 14.81% of the energy contained in the fuel in the entrance of the liquefaction plant are lost or consumed in the processes that involve the chain. When this chain is connected to a power cycle, the recovery of the energy spent in the regasification process reduces the loss of energy for 12,65%. For the side of the power plant, the energy efficiency of the combined cycle operating without connected to the regasification of the LNG is 49,68%, with destruction of exergy of 1078,0 kJ/kg. Depending on the type of considered coupling, the energy efficiency is 61,53%, with consequent reduction of destruction exergy

    Proposição de um metamodelo para a representação do processo de combustão de carvão em um tubo de queda livre baseado em análise numérica

    Get PDF
    O presente trabalho apresenta uma metodologia de avaliação dos processos de combustão em um Drop Tube Furnace– DTF. O processo de combustão é modelado em um software comercial de Mecânica de Fluidos Computacional - CFD e posteriormente ampliado com o auxílio da metodologia estatística de Projeto de Experimentos – DoE. As simulações são baseadas em parâmetros de operação reais de um DTF associado a dados experimentais disponíveis na literatura, considerando a reação de combustão de carvão. O modelo CFD permite observar o perfil de escoamento, temperatura das partículas de carvão, etapas de devolatilização e oxidação do carbono residual, composição dos gases de combustão, taxa de queima de partículas (burnout), além dos efeitos da fuligem e da radiação térmica no processo. Os resultados do CFD mostram o efeito da queima e da fuligem na temperatura da chama, as taxas de burnout de acordo com o tempo de permanência e a temperatura no reator, e quantificam as emissões de CO e NOx. Os desvios médios entre os resultados calculados e os dados experimentais da literatura para temperatura e burnout são de 1,65 % e 3,2 %, respectivamente, obtidos com o modelo em CFD, e de 6,02 % e 3,5 % para o metamodelo. DoE é aplicado aos fatores de controle mais relevantes para as faixas de operação, como: excesso de ar (120 à 585 %), umidade (1,5 à 12 %) e teor de cinzas (1,5 à 10 %) do combustível. Os fatores de resposta observados são temperatura dos gases, burnout, carbono residual (Char), fração de cinza residual (Ash Residual), NOx e fuligem (Soot). O DTF é dividido em 7 volumes adjacentes para os quais são construídos metamodelos algébricos que permitem o cálculo rápido da fração mássica de cinza na partícula, carbono residual, fuligem e NOx. O desvio médio entre os resultados do metamodelo e dos dados experimentais é de 6,02 % para a temperatura dos gases, 3,58 % para o teor de cinzas residuais e 0,21% para a fuligem. Desvios maiores são encontrados nas regiões intermediárias do DTF. As duas abordagens numéricas são capazes de caracterizar o processo de combustão com uma boa concordância em relação aos dados experimentais usados como base.The present work presents a methodology for the evaluation of combustion processes in a Drop Tube Furnace - DTF. The combustion process is modeled by a commercial Computational Fluid Mechanics (CFD) software and the study is further expanded with the aid of the Experiment Design statistical methodology (DoE). Simulations are based on actual operating parameters of a DTF associated with experimental data available in the literature, considering the coal combustion reaction. The CFD model allows to observe the flow profile, carbon and biomass particle temperature, residual carbon devolatization and oxidation steps, flue gas composition, burnout rate, as well as the effects of soot and process thermal radiation. CFD results show the effect of burning and soot on flame temperature, burnout rates according to residence time and reactor temperature, and quantify CO and NOx emissions. The average deviations of the results for temperature and burnout to the calculated values and experimental literature data for the same reactor are 1.65% and 3.2%, respectively, obtained with the CFD model, and 6.02% and 3.5% for the metamodel. DoE methodology is applied to control factors within the operating ranges of excess air (120 to 585%), fuel humidity (1.5 to 12%) and ash content (1.5 to 10%), identified as the most relevant to the combustion process. The observed response factors are gas temperature, burnout, residual carbon (Char), residual ash fraction (Residual Ash), NOx and soot, displayed as response surfaces. DTF is divided into 7 adjoining volumes for which algebraic metamodels are constructed allowing for the quick prediction of ash mass fraction, residual carbon, soot and NOx. Metamodel to experimental data average deviation is 6.02% for gas temperature, 3.58% for particulate residual ash and 0.21% for soot. Larger deviations are found in the intermediate regions of the DTF. Both numerical approaches are able to characterize the combustion process with good agreement
    corecore