1,127 research outputs found

    Magnetic Field-Induced Lattice Effects in a Quasi-2D Organic Conductor Close to the Mott Metal-Insulator Transition

    Full text link
    We present ultra-high-resolution dilatometric studies in magnetic fields on a quasi-two-dimensional organic conductor κ\kappa-(D8-BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, which is located close to the Mott metal-insulator (MI) transition. The obtained thermal expansion coefficient, α(T)\alpha(T), reveals two remarkable features: (i) the Mott MI transition temperature TMIT_{MI} = (13.6 ±\pm 0.6)\,K is insensitive to fields up to 10\,T, the highest applied field; (ii) for fields along the interlayer \emph{b}-axis, a magnetic-field-induced (FI) phase transition at TFIT_{FI} = (9.5 ±\pm 0.5)\,K is observed above a threshold field HcH_c \sim 1 T, indicative of a spin reorientation with strong magneto-elastic coupling.Comment: 5 pages, 4 figure

    Will availability of inhaled human insulin (Exubera (R)) improve management of type 2 diabetes? The design of the Real World trial

    Get PDF
    Background: Common deterrents to insulin therapy for both physicians and patients are the complexity and burden of daily injections. In January 2006, the first inhaled human insulin (INH, Exubera(R) (insulinhuman [ rDNA origin]) InhalationPowder) was approved for use in adult patients with type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) in the United States and European Union. Results from the INH clinical trial program have shown comparable efficacy of INH to subcutaneous (SC) insulin and superior efficacy versus oral antidiabetic agents; thus providing effective glycemic control in adult patients with T2DM without the requirement for preprandial injections. However, because subjects in those trials were randomized to either INH or an alternative, the studies could not estimate the effect of INH on patient acceptance of insulin therapy. Therefore, traditional study designs cannot provide answers to important and practical questions regarding real world effectiveness, which is influenced by psychological and other access barriers.Methods: To overcome these limitations, the Real World Trial was designed to estimate the effect of the availability of INH as a treatment option for glycemic control. A total of approximately 700 patients from Canada, France, Germany, Italy, Spain, United Kingdom, and the United States with T2DM poorly controlled by oral agent therapy will be randomized to two different treatment settings. Patients and clinicians in both groups ( A & B) may choose from all licensed therapies for diabetes including SC insulin delivered by pens; INH will be an additional treatment option only available in Group A. The Real World Trial ( Protocol A2171018) has been registered with ClincalTrials. gov, registration id NCT00134147.Results: The primary outcome for the trial will be the difference in mean glycosylated hemoglobin (HbA(1c)) at 6 months between groups. The design was based on a preceding feasibility study examining the theoretical effects of inhaled insulin availability on treatment choice in 779 patients. In that study, patients were three times more likely to choose insulin therapy when inhaled insulin was available.Conclusion: Innovations in study designs may provide an opportunity to reveal unbiased answers to important treatment questions that are more relevant to prescribers, funding agencies, and healthcare policymakers

    Phase boundary and finite temperature crossovers of the quantum Ising model in two dimensions

    Full text link
    We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is squashed between two distinct non-Gaussian fixed points: the classical fixed point dominated by thermal fluctuations and the quantum critical fixed point dominated by zero-point quantum fluctuations. Truncating an exact flow equation for the effective action we derive a set of renormalization group equations and analyze how the interplay of quantum and thermal fluctuations, both non-Gaussian in nature, influences the shape of the phase boundary and the region in the phase diagram where critical fluctuations occur. The solution of the flow equations makes this interplay transparent: we detect finite temperature crossovers by computing critical exponents and we confirm that the power law describing the finite temperature phase boundary as a function of control parameter is given by the correlation length exponent at zero temperature as predicted in an epsilon-expansion with epsilon=1 by Sachdev, Phys. Rev. B 55, 142 (1997).Comment: submitted to Phys. Rev. B Rapid Communication

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Expression and function of the bHLH genes ALCATRAZ and SPATULA in selected Solanaceae species

    Full text link
    [EN] The genetic mechanisms underlying fruit development have been identified in Arabidopsis and have been comparatively studied in tomato as a representative of fleshy fruits. However, comparative expression and functional analyses on the bHLH genes downstream the genetic network, ALCATRAZ (ALC) and SPATULA (SPT), which are involved in the formation of the dehiscence zone in Arabidopsis, have not been functionally studied in the Solanaceae. Here, we perform detailed expression and functional studies of ALC/SPT homologs in Nicotiana obtusifolia with capsules, and in Capsicum annuum and Solanum lycopersicum with berries. In Solanaceae, ALC and SPT genes are expressed in leaves, and all floral organs, especially in petal margins, stamens and carpels; however, their expression changes during fruit maturation according to the fruit type. Functional analyses show that downregulation of ALC/SPT genes does not have an effect on gynoecium patterning; however, they have acquired opposite roles in petal expansion and have been co-opted in leaf pigmentation in Solanaceae. In addition, ALC/SPT genes repress lignification in time and space during fruit development in Solanaceae. Altogether, some roles of ALC and SPT genes are different between Brassicaceae and Solanaceae; while the paralogs have undergone some subfunctionalization in the former they are mostly redundant in the latter.This work was funded by COLCIENCIAS (111565842812), the iCOOP + 2016 COOPB20250 from the Centro Superior de Investigación Científica, CSIC, the ExpoSeed (H2020.MSCA-RISE-2015-691109) EU grant, the Convocatoria Programáticas 2017-16302, and the Estrategia de Sostenibilidad 2018-2019, from the Universidad de Antioquia. The authors would like to thank the group members of the Ferrándiz and Madueño Labs at IBMCP-UPV for training and help in the standardization of in situ hybridization. Finally, the authors thank Ricardo Callejas and Zulma Monsalve, from the Universidad de Antioquia, for their helpful suggestions during this research.Ortiz-Ramirez, CI.; Giraldo, MA.; Ferrandiz Maestre, C.; Pabon-Mora, N. (2019). Expression and function of the bHLH genes ALCATRAZ and SPATULA in selected Solanaceae species. The Plant Journal. 99(4):686-702. https://doi.org/10.1111/tpj.14352S686702994Golam Masu, A. S. M., Khandaker, L., Berthold, J., Gates, L., Peters, K., Delong, H., & Hossain, K. (2011). Anthocyanin, Total Polyphenols and Antioxidant Activity of Common Bean. American Journal of Food Technology, 6(5), 385-394. doi:10.3923/ajft.2011.385.394Atchley, W. R., Terhalle, W., & Dress, A. (1999). Positional Dependence, Cliques, and Predictive Motifs in the bHLH Protein Domain. Journal of Molecular Evolution, 48(5), 501-516. doi:10.1007/pl00006494Ballester, P., & Ferrándiz, C. (2017). Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 35, 68-75. doi:10.1016/j.pbi.2016.11.008Baudry, A., Heim, M. A., Dubreucq, B., Caboche, M., Weisshaar, B., & Lepiniec, L. (2004). TT2, TT8, and TTG1 synergistically specify the expression ofBANYULSand proanthocyanidin biosynthesis inArabidopsis thaliana. The Plant Journal, 39(3), 366-380. doi:10.1111/j.1365-313x.2004.02138.xBemer, M., Karlova, R., Ballester, A. R., Tikunov, Y. M., Bovy, A. G., Wolters-Arts, M., … de Maagd, R. A. (2012). The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening. The Plant Cell, 24(11), 4437-4451. doi:10.1105/tpc.112.103283Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., & Legrand, M. (2007). Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth. The Plant Cell, 19(1), 148-162. doi:10.1105/tpc.106.044495Dardick, C., & Callahan, A. M. (2014). Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00284Dardick, C. D., Callahan, A. M., Chiozzotto, R., Schaffer, R. J., Piagnani, M. C., & Scorza, R. (2010). Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsisdehiscence. BMC Biology, 8(1). doi:10.1186/1741-7007-8-13Dinneny, J. R., Weigel, D., & Yanofsky, M. F. (2005). A genetic framework for fruit patterning inArabidopsis thaliana. Development, 132(21), 4687-4696. doi:10.1242/dev.02062Dong, Y., Burch-Smith, T. M., Liu, Y., Mamillapalli, P., & Dinesh-Kumar, S. P. (2007). A Ligation-Independent Cloning Tobacco Rattle Virus Vector for High-Throughput Virus-Induced Gene Silencing Identifies Roles for NbMADS4-1 and -2 in Floral Development. Plant Physiology, 145(4), 1161-1170. doi:10.1104/pp.107.107391Dong, T., Hu, Z., Deng, L., Wang, Y., Zhu, M., Zhang, J., & Chen, G. (2013). A Tomato MADS-Box Transcription Factor, SlMADS1, Acts as a Negative Regulator of Fruit Ripening. PLANT PHYSIOLOGY, 163(2), 1026-1036. doi:10.1104/pp.113.224436Feller, A., Machemer, K., Braun, E. L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66(1), 94-116. doi:10.1111/j.1365-313x.2010.04459.xFerrandiz, C. (2002). Regulation of fruit dehiscence in Arabidopsis. Journal of Experimental Botany, 53(377), 2031-2038. doi:10.1093/jxb/erf082Ferrándiz, C., Liljegren, S. J., & Yanofsky, M. F. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xFourquin, C., & Ferrándiz, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist, 202(3), 1001-1013. doi:10.1111/nph.12703Fujisawa, M., Nakano, T., & Ito, Y. (2011). Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-26Fujisawa, M., Shima, Y., Higuchi, N., Nakano, T., Koyama, Y., Kasumi, T., & Ito, Y. (2011). Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta, 235(6), 1107-1122. doi:10.1007/s00425-011-1561-2Garceau, D. C., Batson, M. K., & Pan, I. L. (2017). Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species. Planta, 246(2), 313-321. doi:10.1007/s00425-017-2725-5Girin, T., Paicu, T., Stephenson, P., Fuentes, S., Körner, E., O’Brien, M., … Østergaard, L. (2011). INDEHISCENT and SPATULA Interact to Specify Carpel and Valve Margin Tissue and Thus Promote Seed Dispersal in Arabidopsis  . The Plant Cell, 23(10), 3641-3653. doi:10.1105/tpc.111.090944Gomariz-Fernández, A., Sánchez-Gerschon, V., Fourquin, C., & Ferrándiz, C. (2017). The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00814Gould, K. S. (2000). Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany, 51(347), 1107-1115. doi:10.1093/jexbot/51.347.1107Groszmann, M., Paicu, T., & Smyth, D. R. (2008). Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. The Plant Journal, 55(1), 40-52. doi:10.1111/j.1365-313x.2008.03469.xGroszmann, M., Bylstra, Y., Lampugnani, E. R., & Smyth, D. R. (2010). Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany, 61(5), 1495-1508. doi:10.1093/jxb/erq015Groszmann, M., Paicu, T., Alvarez, J. P., Swain, S. M., & Smyth, D. R. (2011). SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal, 68(5), 816-829. doi:10.1111/j.1365-313x.2011.04732.xHorbowicz, M., Kosson, R., Grzesiuk, A., & Dębski, H. (2008). Anthocyanins of Fruits and Vegetables - Their Occurrence, Analysis and Role in Human Nutrition. Journal of Fruit and Ornamental Plant Research, 68(1), 5-22. doi:10.2478/v10032-008-0001-8Ichihashi, Y., Horiguchi, G., Gleissberg, S., & Tsukaya, H. (2009). The bHLH Transcription Factor SPATULA Controls Final Leaf Size in Arabidopsis thaliana. Plant and Cell Physiology, 51(2), 252-261. doi:10.1093/pcp/pcp184Itkin, M., Seybold, H., Breitel, D., Rogachev, I., Meir, S., & Aharoni, A. (2009). TOMATO AGAMOUS-LIKEâ 1 is a component of the fruit ripening regulatory network. The Plant Journal, 60(6), 1081-1095. doi:10.1111/j.1365-313x.2009.04064.xIto, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Shima, Y., Nakamura, N., … Toki, S. (2017). Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants, 3(11), 866-874. doi:10.1038/s41477-017-0041-5KAY, Q. O. N., DAOUD, H. S., & STIRTON, C. H. (1981). Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society, 83(1), 57-83. doi:10.1111/j.1095-8339.1981.tb00129.xLiljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Liljegren, S. J., Roeder, A. H. ., Kempin, S. A., Gremski, K., Østergaard, L., Guimil, S., … Yanofsky, M. F. (2004). Control of Fruit Patterning in Arabidopsis by INDEHISCENT. Cell, 116(6), 843-853. doi:10.1016/s0092-8674(04)00217-xLiu, E., & Page, J. E. (2008). Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 4(1), 5. doi:10.1186/1746-4811-4-5Liu, Y., Schiff, M., Marathe, R., & Dinesh-Kumar, S. P. (2002). Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. The Plant Journal, 30(4), 415-429. doi:10.1046/j.1365-313x.2002.01297.xLivak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., & Lepiniec, L. (2000). The TT8 Gene Encodes a Basic Helix-Loop-Helix Domain Protein Required for Expression of DFR and BAN Genes in Arabidopsis Siliques. The Plant Cell, 12(10), 1863-1878. doi:10.1105/tpc.12.10.1863Ortiz-Ramírez, C. I., Plata-Arboleda, S., & Pabón-Mora, N. (2018). Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae. Annals of Botany, 121(6), 1211-1230. doi:10.1093/aob/mcy007Pabón-Mora, N., & Litt, A. (2011). Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. American Journal of Botany, 98(9), 1415-1436. doi:10.3732/ajb.1100097Pabón-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development    . Plant Physiology, 158(4), 1685-1704. doi:10.1104/pp.111.192104Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Penfield, S., Josse, E.-M., Kannangara, R., Gilday, A. D., Halliday, K. J., & Graham, I. A. (2005). Cold and Light Control Seed Germination through the bHLH Transcription Factor SPATULA. Current Biology, 15(22), 1998-2006. doi:10.1016/j.cub.2005.11.010Pires, N., & Dolan, L. (2009). Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution, 27(4), 862-874. doi:10.1093/molbev/msp288Rajani, S., & Sundaresan, V. (2001). The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 11(24), 1914-1922. doi:10.1016/s0960-9822(01)00593-0Roeder, A. H. K., & Yanofsky, M. F. (2006). Fruit Development in Arabidopsis. The Arabidopsis Book, 4, e0075. doi:10.1199/tab.0075Roeder, A. H. K., Ferrándiz, C., & Yanofsky, M. F. (2003). The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Current Biology, 13(18), 1630-1635. doi:10.1016/j.cub.2003.08.027Schulz, M., & Weissenböck, G. (1986). Isolation and Separation of Epidermal and Mesophyll Protoplasts from Rye Primary Leaves — Tissue-Specific Characteristics of Secondary Phenolic Product Accumulation. Zeitschrift für Naturforschung C, 41(1-2), 22-27. doi:10.1515/znc-1986-1-205Seymour, G. B., Østergaard, L., Chapman, N. H., Knapp, S., & Martin, C. (2013). Fruit Development and Ripening. Annual Review of Plant Biology, 64(1), 219-241. doi:10.1146/annurev-arplant-050312-120057Smykal, P., Gennen, J., De Bodt, S., Ranganath, V., & Melzer, S. (2007). Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant Molecular Biology, 65(3), 233-242. doi:10.1007/s11103-007-9211-6Tani, E., Polidoros, A. N., & Tsaftaris, A. S. (2007). Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiology, 27(5), 649-659. doi:10.1093/treephys/27.5.649Tani, E., Tsaballa, A., Stedel, C., Kalloniati, C., Papaefthimiou, D., Polidoros, A., … Tsaftaris, A. (2011). The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. Plant Physiology and Biochemistry, 49(6), 654-663. doi:10.1016/j.plaphy.2011.01.020Tisza, V., Kovács, L., Balogh, A., Heszky, L., & Kiss, E. (2010). Characterization of FaSPT, a SPATULA gene encoding a bHLH transcriptional factor from the non-climacteric strawberry fruit. Plant Physiology and Biochemistry, 48(10-11), 822-826. doi:10.1016/j.plaphy.2010.08.001Van der Kooi, C. J., Elzenga, J. T. M., Staal, M., & Stavenga, D. G. (2016). How to colour a flower: on the optical principles of flower coloration. Proceedings of the Royal Society B: Biological Sciences, 283(1830), 20160429. doi:10.1098/rspb.2016.0429Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., … Giovannoni, J. (2002). A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor ( Rin ) Locus. Science, 296(5566), 343-346. doi:10.1126/science.1068181Vrebalov, J., Pan, I. L., Arroyo, A. J. M., McQuinn, R., Chung, M., Poole, M., … Irish, V. F. (2009). Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1    . The Plant Cell, 21(10), 3041-3062. doi:10.1105/tpc.109.066936Xu, W., Dubos, C., & Lepiniec, L. (2015). Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science, 20(3), 176-185. doi:10.1016/j.tplants.2014.12.001Zumajo-Cardona, C., Ambrose, B. A., & Pabón-Mora, N. (2017). Evolution of the SPATULA/ALCATRAZ gene lineage and expression analyses in the basal eudicot, Bocconia frutescens L. (Papaveraceae). EvoDevo, 8(1). doi:10.1186/s13227-017-0068-

    Anomalous scaling of fermions and order parameter fluctuations at quantum criticality

    Full text link
    We analyze the quantum phase transition between a semimetal and a superfluid in a model of attractively interacting fermions with a linear dispersion. The quantum critical properties of this model cannot be treated by the Hertz-Millis approach since integrating out the fermions leads to a singular Landau-Ginzburg order parameter functional. We therefore derive and solve coupled renormalization group equations for the fermionic degrees of freedom and the bosonic order parameter fluctuations. In two spatial dimensions, fermions and bosons acquire anomalous scaling dimensions at the quantum critical point, associated with non-Fermi liquid behavior and non-Gaussian order parameter fluctuations.Comment: 8 pages, 9 figures, highlighted differences to Gross-Neveu model, updated version as publishe

    Actin Filaments Target the Oligomeric Maturation of the Dynamin Gtpase Drp1 to Mitochondrial Fission Sites

    Get PDF
    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites

    Izolacija i sposobnost hvatanja slobodnih radikala cijanidin 3-O-glikozida iz plodova Ribes biebersteinii Berl.

    Get PDF
    The reversed-phase preparative high performance liquid chromatographic purification of the methanol extract of the fruits of Ribes biebersteinii Berl. (Grossulariaceae) afforded five cyanidin glycosides, 3-O-sambubiosyl-5-O-glucosyl cyanidin (1), cyanidin 3-O-sambubioside (2), cyanidin 3-O-glucoside (3), cyanidin 3-O-(2G-xylosyl)-rutinoside (4) and cyanidin 3-O-rutinoside (5). They showed considerable free-radical-scavenging properties in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with the RC50 values of 9.29 × 106, 9.33 × 106, 8.31 × 106, 8.96 × 106 and 9.55 × 106 mol L1, respectively. The structures of these compounds were elucidated by various chemical hydrolyses and spectroscopic means. The total anthocyanin content was 1.9 g per 100 g dried fruits on cyanidin 3-glucoside basis.Pet cijanidin glikozida, 3-O-sambubiozil-5-O-glukozil cijanidin (1), cijanidin 3-O-sambubiozid (2), cijanidin 3-O-glukozid (3), cijanidin 3-O-(2G-ksilozil)-rutinozid (4) i cijanidin 3-O-rutinosid (5) izolirani su iz metanolnog ekstrakta plodova Ribes biebersteinii Berl. (Grossulariaceae) koristeći reverzno-faznu preparativnu tekućinsku kromatografiju visoke učinkovitosti. Cijanidin glikozidi pokazali su sposobnost hvatanja slobodnih radikala u pokusu s 2,2-difenil-1-pikrilhidrazilom (DPPH). Dobivene su sljedeće RC50 vrijednosti: 9,29 × 106, 9,33 × 106, 8,31 × 106, 8,96 × 106, odnosno 9,55 × 106 mol L1. Strukture glikozida određene su kemijskom hidrolizom i spektroskopijom masa. Ukupni sadržaj antocijanina bio je 1,9 g na 100 g suhih plodova preračunato na cijanidin 3-glukozid

    Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records

    Get PDF
    Management of hyperglycemia in hospitalized patients has a significant bearing on outcome, in terms of both morbidity and mortality. However, there are few national assessments of diabetes care during hospitalization which could serve as a baseline for change. This analysis of a large clinical database (74 million unique encounters corresponding to 17 million unique patients) was undertaken to provide such an assessment and to find future directions which might lead to improvements in patient safety. Almost 70,000 inpatient diabetes encounters were identified with sufficient detail for analysis. Multivariable logistic regression was used to fit the relationship between the measurement of HbA1c and early readmission while controlling for covariates such as demographics, severity and type of the disease, and type of admission. Results show that the measurement of HbA1c was performed infrequently (18.4%) in the inpatient setting. The statistical model suggests that the relationship between the probability of readmission and the HbA1c measurement depends on the primary diagnosis. The data suggest further that the greater attention to diabetes reflected in HbA1c determination may improve patient outcomes and lower cost of inpatient care

    Improved stability regions for ground states of the extended Hubbard model

    Full text link
    The ground state phase diagram of the extended Hubbard model containing nearest and next-to-nearest neighbor interactions is investigated in the thermodynamic limit using an exact method. It is found that taking into account local correlations and adding next-to-nearest neighbor interactions both have significant effects on the position of the phase boundaries. Improved stability domains for the η\eta-pairing state and for the fully saturated ferromagnetic state at half filling have been constructed. The results show that these states are the ground states for model Hamiltonians with realistic values of the interaction parameters.Comment: 21 pages (10 figures are included) Revtex, revised version. To be published in Phys. Rev. B. E-mail: [email protected]
    corecore