8 research outputs found

    Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis.

    Get PDF
    Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections

    How to combine the use of intraoperative magnetic resonance imaging (MRI) and awake craniotomy for microsurgical resection of hemorrhagic cavernous malformation in eloquent area: a case report.

    No full text
    Cavernous malformations are clusters of abnormal and hyalinized capillaries without interfering brain tissue. Here, we present a cavernous malformation operated under awake conditions, due to location, in an eloquent area and using intraoperative magnetic resonance imaging due to patient's movement upon the awake phase. We present the pre-, per-, and postoperative course of an inferior parietal cavernous malformation, located in eloquent area, in a 27-year-old right-handed Caucasian male, presenting with intralesional hemorrhage and epilepsy. Preoperative diffusion tensor imaging has shown the cavernous malformation at the interface between the arcuate fasciculus and the inferior fronto-occipital fasciculus. We describe the microsurgical approach, combining preoperative diffusion tensor imaging, neuronavigation, awake microsurgical resection, and intraoperative magnetic resonance imaging. Complete microsurgical en bloc resection has been performed and is feasible even in eloquent locations. Intraoperative magnetic resonance imaging was considered an important adjunct, particularly used in this case as the patient moved during the "awake" phase of the surgery and thus neuronavigation was not accurate anymore. Postoperative course was marked by a unique, generalized seizure without any adverse event. Immediate and 3 months postoperative magnetic resonance imaging confirmed the absence of any residue. Pre- and postoperative neuropsychological exams were unremarkable
    corecore