3,540 research outputs found

    Evidence from Rb–Sr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland

    Get PDF
    Shetland occupies a unique central location within the North Atlantic Caledonides. Thirty-three new high-precision Rb–Sr mineral ages indicate a polyorogenic history. Ages of 723–702 Ma obtained from the vicinity of the Wester Keolka Shear Zone indicate a Neoproterozoic (Knoydartian) age and preclude its correlation with the Silurian Moine Thrust. Ordovician ages of c. 480–443 Ma obtained from the Yell Sound Group and the East Mainland Succession constrain deformation fabrics and metamorphic assemblages to have formed during Grampian accretionary orogenic events, broadly contemporaneously with orogenesis of the Dalradian Supergroup in Ireland and mainland Scotland. The relative paucity of Silurian ages is attributed to a likely location at a high structural level in the Scandian nappe pile relative to mainland Scotland. Ages of c. 416 and c. 411 Ma for the Uyea Shear Zone suggest a late orogenic evolution that has more in common with East Greenland and Norway than with northern mainland Scotland

    The dispersive self-dual Einstein equations and the Toda lattice

    Get PDF
    The Boyer-Finley equation, or SU(∞)SU(\infty)-Toda equation is both a reduction of the self-dual Einstein equations and the dispersionlesslimit of the 2d2d-Toda lattice equation. This suggests that there should be a dispersive version of the self-dual Einstein equation which both contains the Toda lattice equation and whose dispersionless limit is the familiar self-dual Einstein equation. Such a system is studied in this paper. The results are achieved by using a deformation, based on an associative ⋆\star-product, of the algebra sdiff(Σ2)sdiff(\Sigma^2) used in the study of the undeformed, or dispersionless, equations.Comment: 11 pages, LaTeX. To appear: J. Phys.

    Duality for Jacobi group orbit spaces and elliptic solutions of the WDVV equations

    Full text link
    From any given Frobenius manifold one may construct a so-called dual structure which, while not satisfying the full axioms of a Frobenius manifold, shares many of its essential features, such as the existence of a prepotential satisfying the WDVV equations of associativity. Jacobi group orbit spaces naturally carry the structures of a Frobenius manifold and hence there exists a dual prepotential. In this paper this dual prepotential is constructed and expressed in terms of the elliptic polylogarithm function of Beilinson and Levin

    A note on the relationship between rational and trigonometric solutions of the WDVV equations

    Get PDF
    Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which define the corresponding dual Frobenius manifolds. As an application it is shown that certain trigonometric and rational solutions of the WDVV equations are related by such a twisted Legendre transform

    High On/Off Ratio Graphene Nanoconstriction Field Effect Transistor

    Full text link
    We report a method to pattern monolayer graphene nanoconstriction field effect transistors (NCFETs) with critical dimensions below 10 nm. NCFET fabrication is enabled by the use of feedback controlled electromigration (FCE) to form a constriction in a gold etch mask that is first patterned using conventional lithographic techniques. The use of FCE allows the etch mask to be patterned on size scales below the limit of conventional nanolithography. We observe the opening of a confinement-induced energy gap as the NCFET width is reduced, as evidenced by a sharp increase in the NCFET on/off ratio. The on/off ratios we obtain with this procedure can be larger than 1000 at room temperature for the narrowest devices; this is the first report of such large room temperature on/off ratios for patterned graphene FETs.Comment: 18 pages, 6 figures, to appear in Smal

    Multidimensional integrable systems and deformations of Lie algebra homomorphisms

    Full text link
    We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti--self--dual Yang--Mills equations with a gauge group Diff(S1)(S^1).Comment: 14 pages. An example of a reduction to the Beltrami equation added. New title. Final version, published in JM

    Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition

    Full text link
    Researchers have studied the normal-superconducting phase transition in the high-TcT_c cuprates in a magnetic field (the vortex-glass or Bose-glass transition) and in zero field. Often, transport measurements in "zero field" are taken in the Earth's ambient field or in the remnant field of a magnet. We show that fields as small as the Earth's field will alter the shape of the current vs. voltage curves and will result in inaccurate values for the critical temperature TcT_c and the critical exponents ν\nu and zz, and can even destroy the phase transition. This indicates that without proper screening of the magnetic field it is impossible to determine the true zero-field critical parameters, making correct scaling and other data analysis impossible. We also show, theoretically and experimentally, that the self-field generated by the current flowing in the sample has no effect on the current vs. voltage isotherms.Comment: 4 pages, 4 figure

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure
    • …
    corecore