19 research outputs found

    Methods for Combining Payload Parameter Variations with Input Environment

    Get PDF
    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented

    INPUTB: A thermal/structural data interface program for 2-dimensional and 3-dimensional interpolation

    Get PDF
    A computer program (INPUTB) for interpolation in both space and time, and based on a linear interpolation scheme using simplex spatial regions is described. The program was developed to provide data interfacing between the output from thermal analyzers and the input to the BOPACE 3-D program. The INPUTB interpolator is of a general nature and could be used for other tasks. The INPUTB program utilizes temperature values which are given at some sequence of time for a list of strategically located thermal nodes. It operates on these values by performing a double interpolation to provide temperature values at another desired sequence of times for a list of structural nodes

    BOPACE 3-D addendum: The Boeing plastic analysis capabilities for 3-dimensional solids using isoparametric finite elements

    Get PDF
    Modifications and additions incorporated into the BOPACE 3-D program are described. Updates to the program input data formats, error messages, file usage, size limitations, and overlay schematic are included

    Simplified thermal estimation techniques for large space structures

    Get PDF
    A tool for making rapid estimates of the response of space structures to thermal environments encountered in earth orbits is provided for the designer of these structures. Charts giving heating rates and temperatures for certain typical large spacecraft structural elements are provided. Background information for spacecraft thermal design considerations is presented. Environments, requirements, thermal control techniques, design guidelines, and approaches available for more detailed thermal response analysis are discussed

    Evaluation of a metal fuselage frame selectively reinforced with filamentary composites for space shuttle application

    Get PDF
    The development of metal structures reinforced with filamentary composites as a weight saving feature of the space shuttle components is discussed. A frame was selected for study that was representative of the type of construction used in the bulk frames of the orbiter vehicle. Theoretical and experimental investigations were conducted. Component tests were performed to evaluate the critical details used in the designs and to provide credibility to the weight saving results. A model frame was constructed of the reinforced metal material to provide a final evaluation of the construction under realistic load conditions

    Effect of damping on excitability of high-order normal modes

    Get PDF
    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs

    Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report

    Get PDF
    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192

    Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    Get PDF
    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs

    BOPACE 3-D (the Boeing Plastic Analysis Capability for 3-dimensional Solids Using Isoparametric Finite Elements)

    Get PDF
    The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program
    corecore