947 research outputs found

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10−310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10−310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa

    An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten

    No full text
    International audienceAerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E). Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions) represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area) in environments similar to the one studied

    Contribution of residential wood combustion to hourly winter aerosol in Northern Sweden determined by positive matrix factorization

    No full text
    International audienceThe combined effect of residential wood combustion (RWC) emissions with stable atmospheric conditions, which is a frequent occurrence in Northern Sweden during wintertime, can deteriorate the air quality even in small towns. To estimate the contribution of RWC to the total atmospheric aerosol loading, the positive matrix factorization (PMF) method was applied to hourly mean particle number size distributions measured in a residential area in Lycksele during winter 2005/2006. The sources were identified based on the particle number size distribution profiles of the PMF factors, the diurnal contributions patterns estimated by PMF for both weekends and weekdays, and correlation of the modeled particle number concentration per factor with measured aerosol mass concentrations (PM10, PM1, and light-absorbing carbon MLAC). Through these analyses, the factors were identified as local traffic (factor 1), local RWC (factor 2), and local RWC plus long-range transport (LRT) of aerosols (factor 3). In some occasions, it was difficult to detach the contributions of local RWC from background concentrations since their particle number size distributions partially overlapped and the model was not able to separate these two sources. As a consequence, we report the contribution of RWC as a range of values, being the minimum determined by factor 2 and the possible maximum as the contributions of both factors 2 and 3. A multiple linear regression (MLR) of observed PM10, PM1, total particle number, and MLAC concentrations is carried out to determine the source contribution to these aerosol variables. The results reveal RWC is an important source of atmospheric particles in the size range 25?606 nm (44?57%), PM10 (36?82%), PM1 (31?83%), and MLAC (40?76%) mass concentrations in the winter season. The contribution from RWC is especially large on weekends between 18:00 LT and midnight whereas local traffic emissions show similar contributions every day

    Changes in aerosol properties during spring-summer period in the Arctic troposphere

    Get PDF
    The change in aerosol properties during the transition from the more polluted spring to the clean summer in the Arctic troposphere was studied. A six-year data set of observations from Ny-Ã…lesund on Svalbard, covering the months April through June, serve as the basis for the characterisation of this time period. In addition four-day-back trajectories were used to describe air mass histories. The observed transition in aerosol properties from an accumulation-mode dominated distribution to an Aitken-mode dominated distribution is discussed with respect to long-range transport and influences from natural and anthropogenic sources of aerosols and pertinent trace gases. Our study shows that the air-mass transport is an important factor modulating the physical and chemical properties observed. However, the air-mass transport cannot alone explain the annually repeated systematic and rather rapid change in aerosol properties, occurring within a limited time window of approximately 10 days. With a simplified phenomenological model, which delivers the nucleation potential for new-particle formation, we suggest that the rapid shift in aerosol microphysical properties between the Arctic spring and summer is mainly driven by the incoming solar radiation in concert with transport of precursor gases and changes in condensational sink

    A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Värriö

    No full text
    International audienceThe evolution of the aerosol size distribution during transport between Aspvreten (58.8° N, 17.4° E) and Värriö (67.46° N, 29.35° E) was studied using a pseudo-Lagrangian approach. Aerosol dynamic processes were studied and interpreted utilizing a state-of-the-art aerosol dynamic box model UHMA (University of Helsinki Multicomponent Aerosol model) complemented with OH, NO3, O3 and terpene chemistry. In the model simulations, the growth and formation of aerosol particles was controlled by sulphuric acid, ammonia, water and an unidentified low volatile organic compound. This organic compound was assumed to be a product of terpene oxidation with a yield of 13% in the base case conditions. Changes of aerosol size distribution properties during transport between the stations were examined in twelve clear sky cases. On average, the modelled number agreed fairly well with observations. Mass concentration was overestimated by 10%. Apart from dilution, the only removal mechanism for aerosol mass is dry deposition. A series of sensitivity tests performed revealed that the absolute magnitude of dry deposition effects on the aerosol size distribution is slow overall. Furthermore, nucleation does not leave a significant contribution to aerosol number in the selected cases. The sensitivity of the modelled size distribution to concentration of precursor gases and oxidants is, however, obvious. In order to explain observed mass increase during transport we conclude that a yield of low volatile products from oxidation of terpenes of 10?15% is required to explain observed growth rates. Coagulation is acknowledged to be highly important in modelled cases

    Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    No full text
    International audienceWe present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by night without significant processing

    Electromagnetic properties of non-Dirac particles with rest spin 1/2

    Full text link
    We resolve a number of questions related to an analytic description of electromagnetic form factors of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory of fields with double symmetry, we discuss writing the components of wave vectors of particles in the form of infinite continued fractions. We show that for Q2≤0.5Q^{2} \leq 0.5 (GeV/c)2^{2}, where Q2Q^{2} is the transferred momentum squared, electromagnetic form factors that decrease as Q2Q^{2} increases and are close to those experimentally observed in the proton can be obtained without explicitly introducing an internal particle structure.Comment: 18 pages, 2 figure

    One year boundary layer aerosol size distribution data from five nordic background stations

    Get PDF
    International audienceSize distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67º N) down to southern Sweden (56º N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring during the year of study. The maximum of nucleation events occur during the spring months at all stations. Nucleation events occur during other months as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases
    • …
    corecore