15 research outputs found

    Formate-induced CO tolerance and methanogenesis inhibition in fermentation of syngas and plant biomass for carboxylate production

    Get PDF
    Background: Production of monocarboxylates using microbial communities is highly dependent on local and degradable biomass feedstocks. Syngas or different mixtures of H2_2, CO, and CO2_2 can be sourced from biomass gasification, excess renewable electricity, industrial off-gases, and carbon capture plants and co-fed to a fermenter to alleviate dependence on local biomass. To understand the effects of adding these gases during anaerobic fermentation of plant biomass, a series of batch experiments was carried out with different syngas compositions and corn silage (pH 6.0, 32 °C). Results: Co-fermentation of syngas with corn silage increased the overall carboxylate yield per gram of volatile solids (VS) by up to 29% (0.47 ± 0.07 g gVS−1^{−1}; in comparison to 0.37 ± 0.02 g gVS−1^{−1} with a N2_2/CO2_2 headspace), despite slowing down biomass degradation. Ethylene and CO exerted a synergistic effect in preventing methanogenesis, leading to net carbon fixation. Less than 12% of the electrons were misrouted to CH4_4 when either 15 kPa CO or 5 kPa CO + 1.5 kPa ethylene was used. CO increased the selectivity to acetate and propionate, which accounted for 85% (electron equivalents) of all products at 49 kPa CO, by favoring lactic acid bacteria and actinobacteria over n-butyrate and n-caproate producers. Inhibition of n-butyrate and n-caproate production by CO happened even when an inoculum preacclimatized to syngas and lactate was used. Intriguingly, the effect of CO on n-butyrate and n-caproate production was reversed when formate was present in the broth. Conclusions: The concept of co-fermenting syngas and plant biomass shows promise in three aspects: by making anaerobic fermentation a carbon-fixing process, by increasing the yields of short-chain carboxylates (propionate and acetate), and by minimizing electron losses to CH4_4. Moreover, a model was proposed for how formate can alleviate CO inhibition in certain acidogenic bacteria. Testing the fermentation of syngas and plant biomass in a continuous process could potentially improve selectivity to n-butyrate and n-caproate by enriching chain-elongating bacteria adapted to CO and complex biomass

    Mixotrophic chain elongation with syngas and lactate as electron donors

    Get PDF
    Feeding microbial communities with both organic and inorganic substrates can improve sustainability and feasibility of chain elongation processes. Sustainably produced H2, CO2, and CO can be co-fed to microorganisms as a source for acetyl-CoA, while a small amount of an ATP-generating organic substrate helps overcome the kinetic hindrances associated with autotrophic carboxylate production. Here, we operated two semi-continuous bioreactor systems with continuous recirculation of H2, CO2, and CO while co-feeding an organic model feedstock (lactate and acetate) to understand how a mixotrophic community is shaped during carboxylate production. Contrary to the assumption that H2, CO2, and CO support chain elongation via ethanol production in open cultures, significant correlations (p < 0.01) indicated that relatives of Clostridium luticellarii and Eubacterium aggregans produced carboxylates (acetate to n-caproate) while consuming H2, CO2, CO, and lactate themselves. After 100 days, the enriched community was dominated by these two bacteria coexisting in cyclic dynamics shaped by the CO partial pressure. Homoacetogenesis was strongest when the acetate concentration was low (3.2 g L−1), while heterotrophs had the following roles: Pseudoramibacter, Oscillibacter, and Colidextribacter contributed to n-caproate production and Clostridium tyrobutyricum and Acidipropionibacterium spp. grew opportunistically producing n-butyrate and propionate, respectively. The mixotrophic chain elongation community was more efficient in carboxylate production compared with the heterotrophic one and maintained average carbon fixation rates between 0.088 and 1.4 g CO2 equivalents L−1 days−1. The extra H2 and CO consumed routed 82% more electrons to carboxylates and 50% more electrons to carboxylates longer than acetate. This study shows for the first time long-term, stable production of short- and medium-chain carboxylates with a mixotrophic community

    Ammonia Inhibition of Anaerobic Volatile Fatty Acid Degrading Microbial Communities

    Get PDF
    Ammonia inhibition is an important reason for reactor failures and economic losses in anaerobic digestion. Its impact on acetic acid degradation is well-studied, while its effect on propionic and butyric acid degradation has received little attention and is consequently not considered in the Anaerobic Digestion Model No. 1 (ADM1). To compare ammonia inhibition of the degradation of these three volatile fatty acids (VFAs), we fed a mixture of them as sole carbon source to three continuous stirred tank reactors (CSTRs) and increased ammonium bicarbonate concentrations in the influent from 52 to 277 mM. The use of this synthetic substrate allowed for the determination of degradation efficiencies for the individual acids. While butyric acid degradation was hardly affected by the increase of ammonia concentration, propionic acid degradation turned out to be even more inhibited than acetic acid degradation with degradation efficiencies dropping to 31 and 65% for propionic and acetic acid, respectively. The inhibited reactors acclimatized and approximated pre-disturbance degradation efficiencies toward the end of the experiment, which was accompanied by strong microbial community shifts, as observed by amplicon sequencing of 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of mcrA genes. The acetoclastic methanogen Methanosaeta was completely replaced by Methanosarcina. The propionic acid degrading genus Syntrophobacter was replaced by yet unknown propionic acid degraders. The butyric acid degrading genus Syntrophomonas and hydrogenotrophic Methanomicrobiaceae were hardly affected. We hypothesized that the ammonia sensitivity of the initially dominating taxa Methanosaeta and Syntrophobacter led to a stronger inhibition of the acetic and propionic acid degradation compared to butyric acid degradation and hydrogenotrophic methanogenesis, which were facilitated by the ammonia tolerant taxa Syntrophomonas and Methanomicrobiaceae. We implemented this hypothesis into a multi-taxa extension of ADM1, which was able to simulate the dynamics of both microbial community composition and VFA concentration in the experiment. It is thus plausible that the effect of ammonia on VFA degradation strongly depends on the ammonia sensitivity of the dominating taxa, for syntrophic propionate degraders as much as for acetoclastic methanogens

    Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques

    Get PDF
    For biogas-producing continuous stirred tank reactors, an increase in dilution rate increases the methane production rate as long as substrate input can be converted fully. However, higher dilution rates necessitate higher specific microbial growth rates, which are assumed to have a strong impact on the apparent microbial biomass yield due to cellular maintenance. To test this, we operated two reactors at 37°C in parallel at dilution rates of 0.18 and 0.07 days-1 (hydraulic retention times of 5.5 and 14 days, doubling times of 3.9 and 9.9 days in steady state) with identical inoculum and a mixture of volatile fatty acids as sole carbon sources. We evaluated the performance of the Anaerobic Digestion Model No. 1 (ADM1), a thermodynamic black box approach (TBA), and dynamic flux balance analysis (dFBA), to describe the experimental observations. All models overestimated the impact of dilution rate on the apparent microbial biomass yield when using default parameter values. Based on our analysis, a maintenance coefficient value below 0.2 kJ per carbon mole of microbial biomass per hour should be used for the TBA, corresponding to 0.12 mmol ATP per gram dry weight per hour for dFBA, which strongly deviates from the value of 9.8 kJ Cmol h-1 that has been suggested to apply to all anaerobic microorganisms at 37°C. We hypothesized that a decrease in dilution rate might select taxa with minimized maintenance expenditure. However, no major differences in the dominating taxa between the reactors were observed based on amplicon sequencing of 16S rRNA genes and terminal restriction fragment length polymorphism analysis of mcrA genes. Surprisingly, Methanosaeta dominated over Methanosarcina even at a dilution rate of 0.18 days-1, which contradicts previous model expectations. Furthermore, only 23–49% of the bacterial reads could be assigned to known syntrophic fatty acid oxidizers, indicating that unknown members of this functional group remain to be discovered. In conclusion, microbial maintenance was found to be much lower for acetogenesis and methanogenesis than previously assumed, likely due to the exceptionally low growth rates in anaerobic digestion. This finding might also be relevant for other microbial systems operating at similarly low growth rates

    Hydrogen as a Co-electron Donor for Chain Elongation With Complex Communities

    Get PDF
    Electron donor scarcity is seen as one of the major issues limiting economic production of medium-chain carboxylates from waste streams. Previous studies suggest that co-fermentation of hydrogen in microbial communities that realize chain elongation relieves this limitation. To better understand how hydrogen co-feeding can support chain elongation, we enriched three different microbial communities from anaerobic reactors (A, B, and C with ascending levels of diversity) for their ability to produce medium-chain carboxylates from conventional electron donors (lactate or ethanol) or from hydrogen. In the presence of abundant acetate and CO2_{2}, the effects of different abiotic parameters (pH values in acidic to neutral range, initial acetate concentration, and presence of chemical methanogenesis inhibitors) were tested along with the enrichment. The presence of hydrogen facilitated production of butyrate by all communities and improved production of i-butyrate and caproate by the two most diverse communities (B and C), accompanied by consumption of acetate, hydrogen, and lactate/ethanol (when available). Under optimal conditions, hydrogen increased the selectivity of conventional electron donors to caproate from 0.23 ± 0.01 mol e−^{-}/mol e−^{-} to 0.67 ± 0.15 mol e−^{-}/mol e−^{-} with a peak caproate concentration of 4.0 g L−1^{-1}. As a trade-off, the best-performing communities also showed hydrogenotrophic methanogenesis activity by Methanobacterium even at high concentrations of undissociated acetic acid of 2.9 g L−1^{-1} and at low pH of 4.8. According to 16S rRNA amplicon sequencing, the suspected caproate producers were assigned to the family Anaerovoracaceae (Peptostreptococcales) and the genera Megasphaera (99.8% similarity to M. elsdenii), Caproiciproducens, and Clostridium sensu stricto 12 (97–100% similarity to C. luticellarii). Non-methanogenic hydrogen consumption correlated to the abundance of Clostridium sensu stricto 12 taxa (p < 0.01). If a robust methanogenesis inhibition strategy can be found, hydrogen co-feeding along with conventional electron donors can greatly improve selectivity to caproate in complex communities. The lessons learned can help design continuous hydrogen-aided chain elongation bioprocesses

    Beyond Sugar and Ethanol Production: Value Generation Opportunities Through Sugarcane Residues

    Get PDF
    Sugarcane is the most produced agricultural commodity in tropical and subtropical regions, where it is primarily used for the production of sugar and ethanol. The latter is mostly used to produce alcoholic beverages as well as low carbon biofuel. Despite well-established production chains, their respective residues and by-products present unexploited potentials for further product portfolio diversification. These fully or partially untapped product streams are a) sugarcane trash or straw that usually remain on the fields after mechanized harvest, b) ashes derived from bagasse combustion in cogeneration plants, c) filter cake from clarification of the sugarcane juice, d) vinasse which is the liquid residue after distillation of ethanol, and e) biogenic CO2 emitted during bagasse combustion and ethanol fermentation. The development of innovative cascading processes using these residual biomass fractions could significantly reduce final disposal costs, improve the energy output, reduce greenhouse gas emissions, and extend the product portfolio of sugarcane mills. This study reviews not only the state-of-the-art sugarcane biorefinery concepts, but also proposes innovative ways for further valorizing residual biomass. This study is therefore structured in four main areas, namely: i) Cascading use of organic residues for carboxylates, bioplastic, and bio-fertilizer production, ii) recovery of unexploited organic residues via anaerobic digestion to produce biogas, iii) valorization of biogenic CO2 sources, and iv) recovery of silicon from bagasse ashes

    Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms

    No full text
    The potential of two alkali-tolerant, lignocellulolytic environmental enrichment cultures to improve the anaerobic fermentation of Ca(OH)2-pre-treated wheat straw was studied. The biomethane potential of pre-treated straw was 36% higher than that of untreated straw. The bioaugmentation of pre-treated straw with the enrichment cultures did not enhance the methane yield, but accelerated the methane production during the first week. In acidogenic leach-bed fermenters, a 61% higher volatile fatty acid (VFA) production and a 112% higher gas production, mainly CO2, were observed when pre-treated instead of untreated straw was used. With one of the two enrichment cultures as the inoculum, instead of the standard inoculum, the VFA production increased by an additional 36% and the gas production by an additional 110%, again mainly CO2. Analysis of the microbial communities in the leach-bed processes revealed similar bacterial compositions in the fermenters with pre-treated straw, which developed independently of the used inoculum. It was suggested that the positive metabolic effects with the enrichment cultures observed in both systems were due to initial activities of the alkali-tolerant microorganisms tackling the alkaline conditions better than the standard inocula, whereas the latter dominated in the long term

    Inhibitory effect of coumarin on syntrophic fatty acid-oxidizing and methanogenic cultures and biogas reactor microbiomes

    No full text
    Coumarins are widely found in plants as natural constituents having antimicrobial activity. When considering plants that are rich in coumarins for biogas production, adverse effects on microorganisms driving the anaerobic digestion process are expected. Furthermore, coumarin derivatives, like warfarin, which are used as anticoagulating medicines, are found in wastewater, affecting its treatment. Coumarin, the structure common to all coumarins, inhibits the anaerobic digestion process. However, the details of this inhibition are still elusive. Here, we studied the impact of coumarin on acetogenesis and methanogenesis. First, coumarin was applied at four concentrations between 0.25 and 1 g · liter-1 to pure cultures of the methanogens Methanosarcina barkeri and Methanospirillum hungatei, which resulted in up to 25% less methane production. Acetate production of syntrophic propionate- and butyrate-degrading cultures of Syntrophobacter fumaroxidans and Syntrophomonas wolfei was inhibited by 72% at a coumarin concentration of 1 g · liter-1. Coumarin also inhibited acetogenesis and acetoclastic methanogenesis in a complex biogas reactor microbiome. When a coumarin-adapted microbiome was used, acetogenesis and methanogenesis were not inhibited. According to amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, the communities of the two microbiomes were similar, although Methanoculleus was more abundant and Methanobacterium less abundant in the coumarin-adapted than in the nonadapted microbiome. Our results suggest that well-dosed feeding with coumarin-rich feedstocks to full-scale biogas reactors while keeping the coumarin concentrations below 0.5 g · liter-1 will allow adaptation to coumarins by structural and functional community reorganization and coumarin degradation.</p

    Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH

    No full text
    Biomethanation is a promising solution to convert H2 (produced from surplus electricity) and CO2 to CH4 by using hydrogenotrophic methanogens. In ex situ biomethanation with mixed cultures, homoacetogens and methanogens compete for H2/CO2. We enriched a hydrogenotrophic microbiota on CO2 and H2 as sole carbon and energy sources, respectively, to investigate these competing reactions. The microbial community structure and dynamics of bacteria and methanogenic archaea were evaluated through 16S rRNA and mcrA gene amplicon sequencing, respectively. Hydrogenotrophic methanogens and homoacetogens were enriched, as acetate was concomitantly produced alongside CH4. By controlling the media composition, especially changing the reducing agent, the formation of acetate was lowered and grid quality CH4 (&ge;97%) was obtained. Formate was identified as an intermediate that was produced and consumed during the bioprocess. Stirring intensities &ge; 1000 rpm were detrimental, probably due to shear force stress. The predominating methanogens belonged to the genera Methanobacterium and Methanoculleus. The bacterial community was dominated by Lutispora. The methanogenic community was stable, whereas the bacterial community was more dynamic. Our results suggest that hydrogenotrophic communities can be steered towards the selective production of CH4 from H2/CO2 by adapting the media composition, the reducing agent and the stirring intensity

    Three Novel Clostridia Isolates Produce n-Caproate and iso-Butyrate from Lactate : Comparative Genomics of Chain-Elongating Bacteria

    No full text
    The platform chemicals n-caproate and iso-butyrate can be produced by anaerobic fermentation from agro-industrial residues in a process known as microbial chain elongation. Few lactate-consuming chain-elongating species have been isolated and knowledge on their shared genetic features is still limited. Recently we isolated three novel clostridial strains (BL-3, BL-4, and BL-6) that convert lactate to n-caproate and iso-butyrate. Here, we analyzed the genetic background of lactate-based chain elongation in these isolates and other chain-elongating species by comparative genomics. The three strains produced n-caproate, n-butyrate, iso-butyrate, and acetate from lactate, with the highest proportions of n-caproate (18%) for BL-6 and of iso-butyrate (23%) for BL-4 in batch cultivation at pH 5.5. They show high genomic heterogeneity and a relatively small core-genome size. The genomes contain highly conserved genes involved in lactate oxidation, reverse β-oxidation, hydrogen formation and either of two types of energy conservation systems (Rnf and Ech). Including genomes of another eleven experimentally validated chain-elongating strains, we found that the chain elongation-specific core-genome encodes the pathways for reverse β-oxidation, hydrogen formation and energy conservation, while displaying substantial genome heterogeneity. Metabolic features of these isolates are important for biotechnological applications in n-caproate and iso-butyrate production.publishe
    corecore