1,450 research outputs found

    Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    Get PDF
    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry which is discussed in the paper. The results from this study establish the theoretical basis of cell shape recognition by colloidal cell imprints which, combined with cell killing strategies, could lead to an alternative class of cell shape selective antimicrobials, antiviral, and potentially anticancer therapies

    Spectral observations of X Persei: Connection between H-alpha and X-ray emission

    Full text link
    We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period 1999 - 2018. Using new and published data, we found that during "disc-rise" the expansion velocity of the circumstellar disc is 0.4 - 0.7 km/s. Our results suggest that the disc radius in recent decades show evidence of resonant truncation of the disc by resonances 10:1, 3:1, and 2:1, while the maximum disc size is larger than the Roche lobe of the primary and smaller than the closest approach of the neutron star. We find correlation between equivalent width of H-alpha emission line (WαW\alpha) and the X-ray flux, which is visible when 15A˚<Wα40A˚15 \: \AA \: < W\alpha \le 40 \: \AA. The correlation is probably due to wind Roche lobe overflow.Comment: Accepted for publication in Astronomy & Astrophysic

    An ultra melt-resistant hydrogel from food grade carbohydrates

    Get PDF
    © 2017 The Royal Society of Chemistry. We report a binary hydrogel system made from two food grade biopolymers, agar and methylcellulose (agar-MC), which does not require addition of salt for gelation to occur and has very unusual rheological and thermal properties. It is found that the storage modulus of the agar-MC hydrogel far exceeds those of hydrogels from the individual components. In addition, the agar-MC hydrogel has enhanced mechanical properties over the temperature range 25-85 °C and a maximum storage modulus at 55 °C when the concentration of methylcellulose was 0.75% w/v or higher. This is explained by a sol-gel phase transition of the methylcellulose upon heating as supported by differential scanning calorimetry (DSC) measurements. Above the melting point of agar, the storage modulus of agar-MC hydrogel decreases but is still an elastic hydrogel with mechanical properties dominated by the MC gelation. By varying the mixing ratio of the two polymers, agar and MC, it was possible to engineer a food grade hydrogel of controlled mechanical properties and thermal response. SEM imaging of flash-frozen and freeze-dried samples revealed that the agar-MC hydrogel contains two different types of heterogeneous regions of distinct microstructures. The latter was also tested for its stability towards heat treatment which showed that upon heating to temperatures above 120 °C its structure was retained without melting. The produced highly thermally stable hydrogel shows melt resistance which may find application in high temperature food processing and materials templating

    Role of Landau-Rabi quantization of electron motion on the crust of magnetars within the nuclear energy density functional theory

    Full text link
    Magnetic fields of order 101510^{15} G have been measured at the surface of some neutron stars, and much stronger magnetic fields are expected to be present in the solid region beneath the surface. The effects of the magnetic field on the equation of state and on the composition of the crust due to Landau-Rabi quantization of electron motion are studied. Both the outer and inner crustal regions are described in a unified and consistent way within the nuclear-energy density functional theory.Comment: 23 pages, 11 figure

    Fabrication of living soft matter by symbiotic growth of unicellular microorganisms

    Get PDF
    We report the fabrication of living soft matter made as a result of the symbiotic relationship of two unicellular microorganisms. The material is composed of bacterial cellulose produced in situ by acetobacter (Acetobacter aceti NCIMB 8132) in the presence of photosynthetic microalgae (Chlamydomonas reinhardtii cc-124), which integrates into a symbiotic consortium and gets embedded in the produced cellulose composite. The same concept of growing living materials can be applied to other symbiotic microorganism pairs similar to the combination of algae and fungi in lichens, which is widespread in Nature. We demonstrate the in situ growth and immobilisation of the C. reinhardtii cells in the bacterial cellulose matrix produced by the simultaneous growth of acetobacter. The effect of the growth media composition on the produced living materials was investigated. The microstructure and the morphology of the produced living biomaterials were dependent on the shape of the growth culture container and media stirring conditions, which control the access to oxygen. As the photosynthetic C. reinhardtii cells remain viable and produce oxygen as they spontaneously integrate into the matrix of the bacterial cellulose generated by the acetobacter, such living materials have the potential for various applications in bio-hydrogen generation from the immobilised microalgae. The proposed approach for building living soft matter can provide new ways of immobilising other commercially important microorganisms in a bacterial cellulose matrix as a result of symbiosis with acetobacter without the use of synthetic binding agents and in turn increase their production efficiency

    Landau quantization and neutron emissions by nuclei in the crust of a magnetar

    Full text link
    Magnetars are neutron stars endowed with surface magnetic fields of the order of 1014101510^{14}-10^{15}~G, and with presumably much stronger fields in their interior. As a result of Landau quantization of electron motion, the neutron-drip transition in the crust of a magnetar is shifted to either higher or lower densities depending on the magnetic field strength. The impact of nuclear uncertainties is explored considering the recent series of Brussels-Montreal microscopic nuclear mass models. All these models are based on the Hartree-Fock-Bogoliubov method with generalized Skyrme functionals. They differ in their predictions for the symmetry energy coefficient at saturation, and for the stiffness of the neutron-matter equation of state. For comparison, we have also considered the very accurate but more phenomenological model of Duflo and Zuker. Although the equilibrium composition of the crust of a magnetar and the onset of neutron emission are found to be model dependent, the quantum oscillations of the threshold density are essentially universal.Comment: 7 pages, 2 figure

    Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique

    Get PDF
    We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness

    On the Bound States in a Non-linear Quantum Field Theory of a Spinor Field with Higher Derivatives

    Get PDF
    We consider a model of quantum field theory with higher derivatives for a spinor field with quartic selfinteraction. With the help of the Bethe-Salpeter equation we study the problem of the two particle bound states in the "chain" approximation. The existence of a scalar bound state is established.Comment: 14 pages, no figures, LaTe

    Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    Get PDF
    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45–250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles’ surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions

    A scalable platform for functional nanomaterials

    Get PDF
    Bubble bursting at interfaces plays an important role in a spectrum of physical and biological phenomena, from foam evolution to mass transport across various interfaces1-5. Recently, bubble bursting at an air/oil/water-with-surfactant compound interface was found to disperse submicrometer oil droplets into the water column6. Inspired by this observation, here we propose a new top-down platform to generate functional oil-in-water nanoemulsions. We demonstrate scaled-up synthesis of nanoemulsions with stability for days, which offers the flexibility of further treatments and functionalization. By placing functional materials in the appropriate phase, we also document that the bubbling system has the capability to produce nanoemulsions encapsulating functional materials, such as quantum dots, silica nanoparticles and lipid molecules. Considering the simplicity and energy efficiency of the new bubbling platform, together with the diversity of products and the potential for mass production, our one-step a new toolbox for generating (multi-)functional nanoemulsions and nanoparticles. References Vandewalle, N., Lentz, et. al. “Avalanches of popping bubbles in collapsing foams”, Phys. Rev. Lett. 86 , 179-182 (2001). Prentice, P., et. al. “Membrane disruption by optically controlled microbubble cavitation”, Nat. Phys. 1, 107-110 (2005). Russell, L. M., et.. al. “Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting”, Proc. Natl. Acad. Sci. U.S.A. 107 , 6652-6657 (2010). Bird, J. C., et. al. “Daughter bubble cascades produced by folding of ruptured thin films”, Nature, 465 , 759-762 (2010). Lhuissier, H. et. al. “Bursting bubble aerosols”. J. Fluid Mech. 696 , 5-44 (2012). Feng, J. et al. “Nanoemulsions obtained via bubble-bursting at a compound interface” Nat. Phys. 10 , 606-612 (2014)
    corecore