6 research outputs found

    A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

    Full text link
    In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the "best MM-terms" based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi-optimal interpolant to several alternative SG schemes

    Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults

    Get PDF

    Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids

    No full text
    We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples

    Analysis of Outcomes in Ischemic vs Nonischemic Cardiomyopathy in Patients With Atrial Fibrillation A Report From the GARFIELD-AF Registry

    No full text
    IMPORTANCE Congestive heart failure (CHF) is commonly associated with nonvalvular atrial fibrillation (AF), and their combination may affect treatment strategies and outcomes
    corecore