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ABSTRACT

The computing power of modern hardware has been increasing exponentially for several decades
and this trend is expected to persist. However, the increase of computational throughput has also
led to a decrease in reliability to the point where hardware faults are now the norm rather than
the exception. Historically, numerical algorithms have been developed under the assumption that
all of the associated basic algebraic operations can be computed to within round-off error. This
assumption has made modern solvers very susceptible to a particular class of silent errors that may
modify the result of a numerical operation without any external indication (e.g. bit-flip in the CPU
cache). Those silent faults, introduce additional error that cannot be detected or corrected via con-
ventional software resilience techniques (e.g. restart or checksums). Numerical solvers compute
approximations that should not deviate from an analytic solution by more than a prescribed error
tolerance, however, in the presence of silent hardware faults, even if the computer code success-
fully completes execution and returns a result, the produced approximation may fall outside of the
desired accuracy.

We propose a new analytic approach for improving algorithms’ resilience with respect to silent
faults encountered in modern extreme-scale supercomputers. We extend the current framework
of numerical analysis by removing the assumption that all arithmetic operations can be computed
accurately. We introduce the concept of “hardware error” added to our numerical approximations
by potentially unreliable hardware. We also propose an fault model that is agnostic with respect
to the underlying hardware architecture. Using rigorous analysis, we develop new algorithms that
minimize the propagation of hardware error and therefore guarantee convergence even when faults
are encountered.

Iterative solvers are associated with the bulk of computations in many extreme scale appli-
cations and hence we first focus our attention to those methods. In particular, we consider the
class of fixed point solvers. Utilizing existing resilience techniques, we split out algorithm into
two components that we label “safe” and “fast”. The “safe” section is assumed to be executed
without hardware errors (or with negligible probability of failure) and the fast section is assumed
to experience failure. We derive a test condition that would be executed in safe mode, so that er-
rors introduced in the fast computations with large magnitude will be detected and rejected, while
small errors will be automatically corrected. We prove convergence of the enhanced algorithm and
provide a numerical example where we obtain reliable approximations to the solution even if we
execute the algorithm with a very high rate of simulated hardware faults.
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1 Introduction

In the past few decades we have witnessed the rise of computer simulations as the third pillar of
science, next to theory and experiments. The advances in the field of computational science have
created and ever increasing demand for more and more powerful supercomputers. To answer the
challenge, modern extreme scale computers are build to push the hardware to its limits. Fabrication
size shrinks exponentially and constraints on the power consumption require that circuits operate at
near critical voltage, thus even a small voltage fluctuation may have an adverse effect on operation.
In addition, the ever increasing number of components offers more opportunity for hardware fail-
ure. Thus, the increase of computational power has led to a decrease in reliability. Hardware failure
is now the norm rather than the exception and in the near future it is expected that the mean failure
time of a supercomputer component to be of the order of an application runtime [5, 9, 10, 12, 14].

The problem of hardware faults is not a new phenomena and extensive measures have been
taken to ensure that the machines operate reliably. Memory comes with error detection and cor-
rection [14, 15] and CRC checksums are used to guard against data corruption in network traffic.
However, processing cores remain largely unprotected [5, 8] and adding redundancy to all chips
in a cluster is prohibitive in terms of cost and energy consumption. Faults in a single component
are rare, however, in an extreme scale machine, small chances of failure are multiplied to where
they become a common occurrence. A small failure rate of one in a million becomes a near cer-
tainty in a machine of millions of components. Hardware level error detection and correction is
indispensable, however, insufficient to solve the problem of hardware faults.

Software based resilience techniques complement the hardware approach. Software has to
address the three possible outcomes of a code execution:

• The system crashes and no result is returned. In this case, we have no choice but to either
rerun the code or preferably do a full or partial recovery from an earlier saved state. Code that
executes on multiple nodes of a supercomputer for many hours needs to be able to recover
from a crash in a one or more nodes.

• The code computes an invalid result. An invalid result is as good as no result and the code
needs to be rerun or restarted from a previous saved check-point. The most obvious examples
of invalid result are inf and nan. Other example include mathematically or physically im-
possible quantities, such as negative areas, however, those may be due to numerical stability
or missing physics in the model.

• Execution completes and a result it returned that is within expected ranges. However, even
if the result appears to be correct, it is still possible that the machine encountered an internal
error (i.e. “silent fault”). Traditionally, numerical algorithms have been developed under the
assumption that all basic algebraic operations can be computed reliably according to ma-
chine specifications, this assumption makes modern numerical code particularly vulnerable
to silent faults.

The main focus of our work is the third type of errors that provide a unique set of challenges.
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Consider the following example, suppose two variables with values 2 (binary 010) and 4 (binary
100) need to be added. First they are moved from the protected DRAM into the unprotected CPU
cache. Then a voltage fluctuation occurs, causing the cache to fail and flip one bit making the
second value into a 6 (binary 110). When the add instruction is executed, it will result in the
incorrect answer 8 (binary 1000), which will be stored back into DRAM and the corrupt data in
the cache will be cleared. Effectively, the hardware computes that

2 + 4 = 8.

If either 2 or 4 gets corrupted in main memory, we can run a posterior checksum on the data
structures and identify that a fault had occurred. However, in the above example both values 2 and
4 remain intact, but the answer is incorrect. In the recent work of Hoemmen and Heroux [6] those
type of errors are classified as “soft-transient” faults. In order to emphasize the main challenge
associated with those errors we label them as “silent” faults.

One of the most common software resilience technique is the checkpoint/restart [1, 11, 16, 17].
Virtually all large scale software comes with capability to periodically save the execution state and
revert back to an earlier checkpoint if an error is detected. This approach can completely negate
any and all effects of a hardware fault (other than the added run time), however, checkpoint/restart
relies heavily on a mechanism to detect the failure and hence it is unsuited to handle silent faults.

Checksums are a powerful tool that guards against data corruption in network communication
as well as data storage in RAM. A well designed checksum scheme can detect and even correct
errors as small as single bit-flips, however, not all memory storage can be protected in this way.

Checksum schemes can even be used to predict the outcome of a computation and thus identify
a silent fault [7]. However, the approach is restricted to linear operations (i.e. matrix vector solve)
and cannot be trivially generalized to non-linear problems. Furthermore, in modern heterogeneous
computing environment different types of computing units (e.g. CPU or GPU) may use slightly
different rounding precision. The result of floating point operations cannot be predicted bit-by-bit
and hence checksumming floating point data would create a very large number of false-positive
errors.

Redundant computation is yet another approach to guard against hardware failure that is com-
monly applied for machines working in unfriendly environment (e.g. higher radiation levels at
aircraft altitudes). Using redundancy one performs the same computations two or more times to
ensure consistent result. However, redundancy cannot be used on an entire extreme scale applica-
tion [2, 4], at best redundancy can be used on small sections of the code.

Another viable technique is to use post-processing to verify the correctness of the computed
result. While this approach is viable, with the increasing rate of hardware faults we can no longer
have the expectation that a large scale simulation will not encounter silent faults. Therefore, iden-
tifying a problem at the very end of the execution is too late; the only way to correct a faulty result
would be to redo the simulation, which is likely to encounter yet another error. Any silent fault
identification and correction has to be done on-the-fly.

Hoemmen and Heroux [6] propose an approach to split the program execution into two modes,
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“safe” and “fast” modes (called respectively “host” and “guest” modes in the paper). The compu-
tations in “safe mode” are assumed to be performed reliably (i.e. zero or near zero probability of a
fault), however, they are also more “expensive”. The safe mode has to be implemented with either
redundant computation or via the use of specialized hardware, hence only the minimum amount
of work should be performed in this mode. On the other hand, the fast mode is cheap, but prone
to hardware faults. Hoemmen and Heroux propose a modified version of the restarted GMRES
algorithm, where a convergence test is performed in safe mode between every two inner GMRES
iterations. The convergence test rejects the next iterate unless it reduces the residual error, thus
large errors are rejected and only small ones are accepted by the algorithm.

The approach of selective reliability has a lot of potential in dealing with silent faults, however,
it also presents a number of new challenges. It is observed that the convergence of the algorithm
deteriorates as the frequency of the faults increased, due to the additional work needed to correct a
fault. However, the rate of deterioration and the relationship between the properties of the matrix
(e.g. condition number) and the type of errors that can be resolved remains unknown. Thus, the
frequency and type of faults that can be resisted is not fully characterized. Even if convergence is
achieved in the presence of random faults, the final result of the computations is a random vector,
the statistics of which remain to be quantified.

Traditionally numerical algorithms have been developed under the assumption that the un-
derlying algebraic operations (e.g. matrix vector product) can be carried out accurately. As the
reliability of supercomputers decreases, we can no longer afford to make this assumptions. Nu-
merical algorithms compute approximations to the solutions of mathematical problems and thus
every algorithm has associated numerical error. Silent faults introduce additional error into the
approximation and hence numerical error and hardware error have to be addressed together in the
same context. The problem of silent hardware faults has to be answered by numerical analysis.

In this work, we establish a framework of numerical analysis that is free from the assumption
that computations can always be performed accurately. We assume that occasionally the result
of computations will be randomly perturbed. We want our analysis to be agnostic to hardware
architecture and hence we make no assumptions on the structure of the perturbation. Similar to
the approach of Hoemmen and Heroux, we want to reject error of large magnitude and only allow
the introduction of faults that are indistinguishable from standard numerical error. In the new
framework, we provide rigorous error bound for the hardware error and we prove convergence of
the algorithms even if they are implemented on unreliable hardware.

As a demonstration of our approach, we present the analysis of the widely used Fixed Point
family of iterative solvers. We demonstrate how the resilience of the methods can be dramatically
improved and we prove convergence of the methods with respect to hardware error. This is the first
step towards building a suite of resilient numerical algorithms that provide reliable results even in
the presence of silent hardware faults.
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2 Hardware Error Propagation and Convergence

In this section we establish the framework for analyzing the effects of silent hardware faults on
numerical algorithms. We define “hardware error” and establish the meaning of “convergence”. In
addition, we provide a fault model that is agnostic with respect to hardware architecture or specific
software implementation.

2.1 Hardware Error

Numerical algorithms approximate the solutions to mathematical problems and one of the main
focuses of analysis is the problem of error and convergence. Here are some examples:

• When differential equations are approximated by Finite Element or Finite Difference schemes,
there is discretization error associated with the density of the mesh. A discretization scheme
is convergent if the error goes to zero as the mesh density is increased (i.e. ∆x→ 0).

• Iterative solvers for linear and non-linear equations create a sequences of approximations
that converge to the exact solution, then the sequence is terminated after a finite number
of steps. The difference between the final step and the exact solution is the iteration error,
which can be reduced by additional iterations.

In all cases, analytic convergence is defined as: for every ε > 0, there is a finite amount of work
(e.g. solving a problem on a denser mesh or doing more iterations) that will drive the numerical
error to less than ε.

Following the same analogy, we present the following definition:

Definition 1 Hardware Error

Error introduced into numerical computations by silent hardware malfunction.

For the remaining of the paper we will denote the hardware error as eh, which is fundamentally
a random variable. Hence convergence needs to be defined in statistical terms. In this work we
consider the expected value and variance of eh, however, higher order moments follow analogously.

Definition 2 Convergence with Respect to Hardware Error

A method is convergent with respect to the hardware error, if for every ε > 0 there is a finite
amount of work that will make E[eh] < ε and V [eh] < ε2, where E[eh] and V [eh] denote the
expected value and variance of eh.
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Note that hardware error is not to be confused with round off error as there are some key
differences:

• When numbers are represented in finite precision, every operation introduces rounding error.
Hardware error on the other hand is a relatively rare phenomena and will originate only in a
small number of random operations.

• Finite precision computations are usually performed according to standards (e.g. IEEE-754
floating point). If standards are followed exactly, then the rounding error is a deterministic
quantity, while the hardware error is due to random behavior that deviates from the standards.

• Round-off error is a function of the precision and conditioning of the the numerical method,
usually it is a small and bounded quantity. On the other hand, hardware error may range
from machine precision to the largest representable number [3].

The convergence may be contingent upon the properties of the hardware, such as rate of failure
or expected magnitude of the failure, therefore a method may be only conditionally convergent and
the relative resilience of two methods can be compared based on the restrictions or additional as-
sumption that they require (i.e. an algorithm may be convergent on one machine, but not another).

2.2 Error Model

In order to analyze the effects of hardware error on a numerical algorithm, we need to introduce
an analytic error model. Utilizing the fast/safe mode approach of Hoemmen and Heroux, we split
the algorithm into two parts. In their work, Hoemmen and Heroux perform a numerical simulation
by assigning a pattern of random bit-flips, however, this approach assumes specific floating point
representation as well as specific algorithm implementation. We propose an analytic approach,
where we assume that at each step, for each operation performed in fast mode, the result may be
perturbed by a random quantity. For example, if a matrix vector product results in x, then there is
non-zero probability of computing x+ x̃, where the hardware error is eh = ‖x̃‖.

We want our approach to be agnostic with respect to the specifics of the machine, hence we
make as little assumption on the structure of x̃ as possible. In order to keep the analysis general,
we cannot assume a distribution for the magnitude ‖x̃‖. Our earlier work [3] on the analysis of the
most popular IEEE-754 floating point standard, shows that the statistics of the error introduced in
a dot product by a single bit-flip is strongly influenced by the position of the flipped bit (i.e. the
least or most significant bit) as well as the scaling of the corrupt vector entry. Therefore, statistics
of ‖x̃‖ are often times problem dependent. Only some generic statistical properties, such as the
frequency of silent faults, may be assumed for the purpose of convergence analysis.
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3 Analytic Example: Fixed Point Methods

Iterative linear and non-linear solvers are the methods of choice for large scale applications. Such
methods generate a sequence of approximate solutions that converge to the exact solution and the
sequence is terminated after a convergence criteria has been met. One of the most widely used
class of iterative methods is the family of fixed point solvers, which includes the linear Jacobi
and Gauss-Siedel methods as well as the non-linear Newton method. Those posses some natural
resilience properties and hence they make for a good illustrative example of our approach.

3.1 Fixed Point Methods

Fixed point methods are based on the famous Fixed Point Theorem:

Theorem 1 Fixed Point Theorem

Suppose Γ ⊂ RN is complete in some norm ‖ · ‖ and let G : Γ→ Γ be a contraction operator,
i.e. there is a constant r < 1 so that

‖G(v)−G(w)‖ ≤ r‖v − w‖, for all v, w ∈ Γ.

Then, there is a unique fixed point v∗ ∈ Γ so that G(v∗) = v∗. Furthermore, for any v0 ∈ Γ the
sequence {vi}∞i=0 defined by vi+1 = G(vi) converges to v∗ (i.e. ‖vi − v∗‖ → 0) and the error
‖vi − v∗‖ is bounded by

‖vi − v∗‖ ≤ ri‖v0 − v∗‖.
A proof of the theorem can be found in [13].

In particular, consider the system of linear equations given by

Ax = b, (3.1)

where A ∈ RN×N is a given matrix, b ∈ RN is a given right hand side and we are interested in
the solution x∗ ∈ RN that satisfies (3.1). Two of the most popular fixed point methods for linear
equations are the Jacobi and Gauss-Seidel methods. The contraction maps and the corresponding
rates are given as

• Jacobi Method
GJ(x) = D−1 (b− Sx) , rJ = ρ(D−1S),

where D = diag(A) (i.e. D is a diagonal matrix with the entries of A) and S = A−D.

• Gauss-Seidel Method

GGS(x) = L−1 (b− Ux) , rGS = ρ(L−1U),

whereD = lower(A) (i.e. L is a lower triangular matrix of the entries ofA) and U = A−L.
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The solution x∗ to (3.1) is a fixed point to bothGJ(x) andGGS(x), therefore, if rJ < 1 or rGS < 1,
according to Theorem 1, the corresponding fixed point iteration will converge to x∗ for all x0 ∈ RN

(i.e. Γ ≡ RN ).

The fixed point algorithms can be summarized in the following way

Algorithm 1 Fixed Point Iteration
Given G, b, initial x0, tolerance ε and kmin

Let k = 0
repeat
xk+1 = G(xk)
ek = ‖xk+1 − xk‖
k = k + 1

until (k > kmin) and (ek < ε)

The difference ek between two successive iterates is a the most common indicator for conver-
gence, when the iteration reaches asymptotic mode. However, this condition may cause premature
termination in the first few iterations, hence we require that at least kmin number of iterations are
taken1.

3.2 Hardware Error Analysis

The most computationally expensive part of Algorithm 1 is computing the next iterate

xk+1 = G(xk).

Suppose that at step k we encounter a silent hardware fault, which perturbs the result, i.e. instead
of xk+1 we compute

x̃k+1 = G(xk) + x̃.

So long as x̃k+1 ∈ Γ, the algorithm will generate a new sequence y0 = x̃k+1 with yi+1 = G(yi) so
that yi → x∗. The convergence for the new sequence is bounded by

‖yi − x∗‖ ≤ ri‖y0 − x∗‖ ≤ ri‖xk+1 − x∗‖+ ri‖x̃‖ ≤ rirk+1‖x0 − x∗‖+ ri‖x̃‖.

The first term of the estimate ri+k+1‖x0 + x∗‖ is identical to the one associated with the error free
iteration. Therefore, the hardware error associated with the Fixed Point Iteration that is caused by
a single hardware failure is given by

eh = ri‖x̃‖,

where i is the number of iterations after the failure and ‖x̃‖ is the magnitude of the introduced
error.

1Depending on the structure of G(x), in many applications it is sufficient to take kmin = 1.
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Analogously, if we encounter j hardware faults at iterations i1, i2, · · · , ij with perturbations
x̃1, x̃2, · · · x̃j , then we have the error bound

‖xk − x∗‖ ≤ rk‖x0 + x∗‖+

j∑
l=1

rk−il‖x̃l‖.

Thus the hardware error associated with multiple silent faults is eh =
∑j

l=1 r
k−il‖x̃l‖.

Next we ask whether or not the fixed point iteration is convergent with respect to hardware
error. The terms rk−il → 0 as k → ∞, however, so long as the probability of fault at the k − th
step is bounded away from zero, the statistics of rk−il will not converge. The hardware error is also
very sensitive to the magnitude of ‖x̃‖, a single fault of large magnitude may require too many
additional iterations to converge. Our earlier work shows how rescaling the entries of A can be
used to minimize the statistics of ‖x̃‖ [3], however, not all problems can be efficiently rescaled and
even then the expectation of ‖x̃‖ cannot be driven to zero. Therefore, the fixed point iteration is
not convergent with respect to silent faults in the evaluation of G(xk).

Furthermore, the above analysis considers only silent faults in the evaluation of G(xk), how-
ever, the evaluation of ek is also susceptible to hardware error. This may lead to an early exit of the
iteration loop and false convergence before the criteria ek < ε has been met. Therefore, the fixed
point iteration is not convergent with respect to faults in computing ek.

3.3 Resilience Enhancement Techniques and Convergence

First we note that evaluation of ek as well as any conditional branching in the algorithm has to be
evaluated in save mode. This can be implemented on dedicated hardware or via redundancy [6].
We can also note that the work associated with ‖xk+1−xk‖ is significantly less than the evaluation
of G(xk), in fact, in many applications the difference may be several orders of magnitude. Hence,
if a silent fault is encountered, it is far more likely to happen during evaluations of G(xk) and
this alone may be sufficient to reduce the risk associated with computing ek in fast mode to an
acceptable level.

The evaluation ofG(xk) is the most computationally expensive step of the algorithm and hence
it must be executed in fast mode. Since fast mode is susceptible to silent faults, we need a way to
discriminate against large hardware error. Observe that due to the contraction properties of G(x)
we have that

ek = ‖xk+1 − xk‖ = ‖G(xk)−G(xk−1)‖ ≤ r‖xk − xk−1‖ = rek−1.

We expect to observe this monotonic behavior and it is a condition that is very easy to verify at
each step. If the condition fails (i.e. we observe other than monotonic convergence), then we reject
the next iterate xk+1 and recompute G(xk). In practice, the value of r may be unknown, hence we
can use an upper estimate β ∈ (r, 1]. If such estimate is not available, we can start the iteration
with β = 1 and consider ek+1/ek < r, then from several ek we can estimate r. In addition, we also
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need to chose a value of e−1 = ‖x0 − x∗‖. We could use the upper bound e−1 = ‖x0‖ + ‖x∗‖ or
e−1 = ‖x0‖+ γ, where we select γ > ‖x∗‖ as an estimate of ‖x∗‖.

We propose the following improved algorithm, where all steps except xk+1 = G(xk) are exe-
cuted in safe mode:

Algorithm 2 Improved Fixed Point Iteration
Given G, initial x0, β ∈ (r, 1], γ > ‖x∗‖, tolerance ε and kmin

Let e−1 = ‖x0‖+ γ
k = 0
repeat
xk+1 = G(xk)
ek = ‖xk+1 − xk‖
if ek < βek−1 then

Accept xk+1 (i.e. k = k + 1)
else

Reject the step (i.e. make no modifications to k)
end if

until (k < kmin) or (ek < ε)

The evaluation of G(xk) is the only step of the algorithm susceptible to silent faults. We note
that it is possible for a fault in G(xk) to create a false positive rejection and therefore stagnation,
however, we address this issues at a late point and we first focus on the effects of the faults on the
iterates xk.

Analogous to our earlier analysis, we replace xk+1 by

x̃k+1 = G(xk) + x̃.

First consider the case when k = 0. The faulty initial iterate would be rejected unless

‖x1 + x̃− x0‖ < β (‖x0‖+ γ) .

If we consider a new iteration y0 = x̃1, we have the bound

‖yi − x∗‖ ≤ ri‖x̃1 − x∗‖
≤ ri‖x̃1 − x0 + x0 − x∗‖
≤ ri (β‖x0‖+ βγ + ‖x0 − x∗‖) .

Note that the error bound for the new iteration is independent from the magnitude ‖x̃‖ and it
depends only on the parameter β, γ and the initial iterate x0. Therefore, the improved algorithms
is convergent with respect to a fault in the first iteration.

If k > 0, the modified method will reject x̃k unless

‖xk+1 + x̃− xk‖ < β‖xk − xk−1‖.

10



Assuming that x̃k+1 is the starting point of a new iteration {yi}, the error at step yi will be bounded

‖yi − x∗‖ ≤ ri‖x̃k+1 − x∗‖
≤ ri‖x̃k+1 − xk + xk − x∗‖
≤ riβ‖xk − xk−1‖+ ri‖xk − x∗‖
≤ riβrk−1‖x0 − x∗‖+ rirk‖x0 − x∗‖
= ri+k(1 + β/r)‖x0 − x∗‖

= ri+k+1‖x0 − x∗‖+ ri+k

(
1 +

β

r
− r
)
‖x0 − x∗‖.

Note that i+k+1 is the total number of iterations before and after the fault and hence, the hardware
error associated with the improved iteration is bounded by

eh ≤ ri+k−1

(
1 +

β

r
− r
)
‖x0 − x∗‖.

The bound on the hardware error is independent from either the iteration on which the fault was en-
countered or the magnitude ‖x̃‖ of the introduced perturbation. Therefore, the improved algorithm
is convergent with respect to one hardware fault.

We can extend the result to multiple hardware faults. The total numerical error is bounded

‖xk − x∗‖ ≤ rk−j(1 + β/r)j‖x0 − x∗‖,

where j is the number of accepted faults. The statistics of the error depend only on k, j and the
parameter β and x0, where only j is a random variable.

Consider the statistics of j. Let P (j|k) denote the probability of accepting j hardware faults in
k iterations. Then the statistics of the hardware error can be bounded by

E [‖xk − x∗‖] ≤ ‖x0 − x∗‖
k∑

j=0

rk−j(1 + β/r)jP (j|k),

V [‖xk − x∗‖] ≤ ‖x0 − x∗‖2

k∑
j=0

r2k−2j(1 + β/r)2jP (j|k).

Therefore, the improved iteration would be convergent if

lim
k→∞

k∑
j=0

rk−j(1 + β/r)jP (j|k) = 0,

lim
k→∞

k∑
j=0

r2k−2j(1 + β/r)2jP (j|k) = 0,

and if we do not encounter any false positive rejections.
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3.4 Guarding Against False Positive Rejections

Consider Algorithm 2 and suppose that at step k the result of G(xk) is perturbed so that

x̃k = G(xk) + x̃ ≈ xk.

Even though ek is computed in safe mode, the perturbation x̃ will make ek very small, which can
cause either an early termination or a fault-free k + 2 iterate would be incorrectly rejected and the
algorithm would stagnate. A number of techniques can be applied to avoid such problems.

To avoid stagnation use can do one of the following:

• We could apply a redundancy technique, we could keep track of the rejected steps and note
if two or more successive xk+1 are rejected with similar ek. If the probability of multiple
consecutive silent faults is negligible, then we have a strong indication of stagnation. In this
case, we may overwrite the accept/reject criteria and accept the next iterate.

• Upon encountering a fault, we may reject the last two computed iterates, i.e. we reject both
xk+1 as well as xk. This approach will guard against any stagnation, however, every faulty
iterate may result in a rejection of a fault free iterate. This is a feasible approach only if the
rate of hardware faults is very low and the increased storage cost of keeping two consecutive
iterates is not of consideration.

• Yet another redundancy approach may be to test ek against several of the past ek−1, ek−2, · · · .
That is

if (ek < βek−1)or(ek < β2ek−2)or(ek < β3ek−3) then
Accept xk+1

else
Reject xk+1

end if

• In addition to having the upper bound ek ≤ βek−1, we can also introduce a lower bound
αek−1 ≤ ek ≤ βek−1. We observe that ek ≈ rek−1 and chose α so that

r2

β
< α < r.

Assume that we encounter a silent fault at step k, which results in ek being smaller but
bounded from below ek > αek−1. Suppose that the next iterate is fault free (i.e. ek+1 < rek),
then

ek+1 ≤ r2ek−1 = β
r2

β
ek−1 ≤ βαek−1 < βek,

and therefore the fault free iterate ek+1 will be accepted (i.e. there is no stagnation).
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To avoid early termination can do one of the following:

• We could use post-processing in safe mode on the final iterate to verify that it satisfies the
equation of interest. If the test fails, we can restart the fixed point iteration with the last
iterate as the new initial x0. This is a very safe, but potentially expensive approach.

• We could require that two or more of the last computed ek simultaneously satisfy the con-
vergence criteria ek < ε, i.e. we can replace the test by

repeat
· · ·

until (ek < ε) and (ek−1 < ε/r) and (ek−2 < ε/r2) · · ·

• If we use the accept/reject test αek−1 ≤ ek ≤ βek−1, it will naturally guard against early
termination as it will bound ek from below.

All of above techniques are viable under different circumstance. We select the two that in the
authors’ opinion are most robust and most widely applicable. We present the resilient fixed point
algorithm.

Algorithm 3 Resilient Fixed Point Iteration
Given G, initial x0, β ∈ (r, 1], α ∈ (r2/β, r), γ > ‖x∗‖, tolerance ε and kmin

Let e−1 = ‖x0‖+ γ
k = 0
repeat
xk+1 = G(xk)
ek = ‖xk+1 − xk‖
if αek−1 ≤ ek ≤ βek−1 then

Accept xk+1 (i.e. k = k + 1)
else

Reject the step (i.e. make no modifications to k)
end if

until (k < kmin) or (ek < ε)

Where α, β and γ are tuning parameters that affect the magnitude of the hardware error.

13



3.5 Convergence Rate

Consider the bounds on the statistics

E [‖xk − x∗‖] ≤ ‖x0 − x∗‖
k∑

j=0

rk−j(1 + β/r)jP (j|k),

V [‖xk − x∗‖] ≤ ‖x0 − x∗‖2

k∑
j=0

r2k−2j(1 + β/r)2jP (j|k).

In order to discuss the convergence rate, we need to assume a model for P (j|k). Since the con-
vergence depends only on the number of accepted hardware faults in k iterations, we may derive a
model of P (j|k) based solely on the rate of faults. Let every iteration has a probability of fault p
that is independent from other iteration or from k. Then P (j|k) has the binomial distribution

P (j|k) =
k!

j!(k − j)!
pj(1− p)k−j.

Substituting into the bounds for the statistics

E [‖xk − x∗‖] ≤ ‖x0 − x∗‖
k∑

j=0

k!

j!(k − j)!
rk−j(1 + β/r)jpj(1− p)k−j,

V [‖xk − x∗‖] ≤ ‖x0 − x∗‖2

k∑
j=0

k!

j!(k − j)!
r2k−2j(1 + β/r)2jpj(1− p)k−j.

Combining like terms yields

E [‖xk − x∗‖] ≤ ‖x0 − x∗‖
k∑

j=0

k!

j!(k − j)!
(r(1− p))k−j((1 + β/r)p)j,

V [‖xk − x∗‖] ≤ ‖x0 − x∗‖2

k∑
j=0

k!

j!(k − j)!
(r2(1− p))k−j((1 + β/r)2p)j.

Using the polynomial expansion formula

E [‖xk − x∗‖] ≤ ‖x0 − x∗‖ (r(1− p) + (1 + β/r)p)k ,

V [‖xk − x∗‖] ≤ ‖x0 − x∗‖2
(
r2(1− p) + (1 + β/r)2p

)k
. (3.2)

The right hand sides will converge to zero if

p <
1− r2

(1 + β/r)2 − r2
,
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which gives us a relationship between the contraction properties of G(x) and the reliability of the
hardware needed for the resilient fixed point iteration to converge. In particular we have been able
to quantity the following:

• For perfectly reliable hardware (i.e. p = 0),

(r(1− p) + (1 + β/r)p)k = rk,

and we recover the rate of convergence of the classical fixed point iteration.

• As the hardware fault rate p increases, then r(1− p) + (1 + β/r)p increases and the conver-
gence deteriorates accordingly.

• As r → 1 and the conditioning of the fixed point method deteriorates, the upper bound forces
p → 0, which signifies that we need more reliable hardware to solve a problem with worse
conditioning.

• As r → 0, p is bounded from above by 0.5, which means that even in the best scenario, we
need hardware that can compute at least every second iteration without any soft faults.
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4 Numerical Example

In this section, our goal is to numerically verify the theoretical results about the regular and resilient
Fixed Point Iterations. We consider the particular example of the Jacobi method applied to the
linear system of equations associated with one step of the implicit time integration of the heat
equation.

Let Ω = [0, 1]× [0, 1] ⊂ R2 and consider the partial differential equation

d

dt
u(t, x, y) = − ∂2

∂x2
u(t, x, y)− ∂2

∂y2
u(t, x, y), (x, y) ∈ Ω, t > 0,

u(t, x, y)|∂Ω = 0,

u(0, x, y) = xy(x− 1)(y − 1).

We seek a numerical approximation to the solution u(t, x, y). We discretize the problem in Ω using
Finite Difference scheme with uniformly distributed nodes. Define

{xi}ni=1, xi =
i

n+ 1
, {yj}nj=1, yj =

j

n+ 1
,

and approximate

u(t, xi, yj) ≈ ui,j(t), ui,j(0) = xiyj(xi − 1)(yj − 1).

We discretize the diffusion operator as

− ∂2

∂x2
ui,j(t)−

∂2

∂y2
ui,j(t) ≈

ui−1,j(t)− 2ui,j(t) + ui+1,j(t)

∆x2
+
ui,j−1(t)− 2ui,j(t) + ui,j+1(t)

∆y2
,

where ∆x = ∆y = 1
n+1

and u0,j(t) = un+1,j(t) = ui,0(t) = ui,n+1(t) = 0. The spacial discretiza-
tion results in n2 ordinary differential equations that can be written in a matrix form

v̇(t) = Lv(t),

where the k-th component of v(t) is associated with ui,j(t) by v(i−1)n+j(t) = ui,j(t) and L is the
matrix representation of the discretized operator.

We evolve the system in time using backward Euler method. We select a time step ∆t and
approximate

v(t+ ∆t) ≈ (I −∆tL)−1 v(t).

At each time step we need to solve a system of linear equations.

In order to study the resilience properties of the fixed point iteration, we consider on the first
linear system (i.e. t = 0). We take n = 100 and ∆t = 10−4, which results in the system of linear
equations

Ax = b,
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where A = I −∆tL, b = v(0) and x ≈ v(∆t). We use the Jacobi fixed point method with x0 = b
and ε = 10−8. The spectral radius of the iteration matrix is r ≈ 0.8028.

We perform all computations on a desktop computer with Intel Sandy-Bridge-E 6-core CPU
and we implement our algorithms using MATLAB. The probability of a silent fault on the machine
for the short duration of the computation is negligible. Nevertheless, we performed all the test
twice to ensure consistent result. Since the hardware failure rate on our machine is too low, we
need to artificially introduce faults into the computations. At every iteration, we poll a pseudo
random number using MATLAB’s rand() function, which returns a uniformly distributed number
in the range (0, 1). If the random number if smaller than a specified threshold 0.1, we introduce
a perturbation to the evaluation of xk+1. The perturbation x̃ is a pseudo-random vector added to
xk+1. To ensure that x̃ has magnitude that spans a wide range of possible perturbations we use the
following MATLAB code:

function [ x_tildae ] = getXTildae( N )

err = randn( N, 1 );
if ( rand(1,1) > 2/3 )

if ( rand(1,1) > 1/3 )
err = 100 *rand( 1, 1 ) * err / norm( err );

else
err = 10000 *rand( 1, 1 ) * err / norm( err );

end
elseif ( rand(1,1) > 2/3 )

err = 0.01 *rand( 1, 1 ) * err / norm( err );
elseif ( rand(1,1) > 2/3 )

err = 0.001 *rand( 1, 1 ) * err / norm( err );
elseif ( rand(1,1) > 1/3 )

err = 1.E-6 *rand( 1, 1 ) * err / norm( err );
else

err = 1.E-8 *rand( 1, 1 ) * err / norm( err );
end
x_tildae = err;

end

We set the rate of silent faults to be one in ten, which is extremely high compared to real world
hardware. However, for the purpose of this study, we want to observe the effects of the simulated
faults on the algorithms and thus we need such faults to be common enough. We make only one
fault free simulation for comparison purposes, and in all other cases, we want to encounter at least
one fault.

Fist we apply Algorithm 1 without any hardware faults. On Figure 1 we observe that the
method converges in 83 iterations as well as the linear convergence rate. However, if we assume
soft fault rate of one in ten iterations, the classic fixed point method fails to converge. The results
from one realization of the faulty algorithm is given on Figure 2. In order to study the statistics of
the error, we use Monte Carlo sampling. We take 1000 realization of Algorithm 1 executed with
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simulated faults and average the resulting error as a function of the iteration. On Figure 3 we see
that the expected value of the error does not converge for the first 500 iterations. It is possible
for a realization to converge (e.g. there is 0.983 probability that no faults would be encountered),
however, we should have no expectation of convergence.

Next we perform the same set of test using the resilient fixed point iteration of Algorithm 3. We
use α = 0.7, β = 1 and γ = 1. The result of one realization is shown on Figure 4. The introduction
of faults deteriorates the convergence rate, however, the resilient method does converges in 90
iterations. Furthermore, on Figure 5, we observe convergence for both the expected value and
standard deviation.

The theoretical bounds on the statistics (3.2) depends on p, which is the rate of accepted soft
faults which is smaller than the total rate of faults. Using Monte Carlo sampling again, we estimate
the rate of accepted faults as p ≈ 0.04. On Figure 6, we compare the observed expected value for
the error and the theoretical error bound. The error bound assumes the worst case scenario and
therefore it is an overestimate. Nevertheless, we observe the expected linear convergence rate, thus
demonstrating that the resilient fixed point iteration is indeed convergent even in the presence of a
very high rate of faults.
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Figure 1: Convergence of the Jacobi method when executed without simulated hardware faults.
We observe the expected linear convergence and the method takes 72 iterations to converge.
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Figure 2: Convergence of the Jacobi method implemented in the classical fixed point itereration of
Algortihm 1. When we introduce simulate hardware faults into the computations, the regular fixed
point iterations fails to converge.
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Figure 3: Expected value of the error associated with the regular fixed point iteration of (i.e.
Algorithm 1), when the iteration is executed with and without simulated faults. For the first 500
iterations, the expected value of the faulty iteration does not decaly.
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Figure 4: One realization of the resilient fixed point iteratio of Algorithm 3 executed with simulated
hardware faults plotted together with the fault free iteration. We observe close match between the
two convergence rates.
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Figure 5: Expected value and standard deviation of the resilient fixed point iteratio of Algorithm
3 executed with simulated hardware faults plotted together with the fault free iteration. The statis-
tics of the resilient algorithm converge to zero which demonstrates that the resilient algorithm is
convergent with respect to silent hardware faults.
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Figure 6: The expacted value of the error associated with the resilient Algorithm 3 and the theo-
retical error bound. The error analysis considers the worst case scenario for the error and thus the
upper bound is not sharp. However, in both cases, we observe the linear convergence rate.
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5 Conclusion

This work demonstrates an analytical algorithmic approach for silent hardware faults that can
complement existing resilience techniques. Utilizing the hardware and software based resilience
techniques, we split the algorithm into safe and fast modes. While most of the computations are
performed in the fast mode, a well chosen accept/reject criteria executed in safe mode can control
the introduction propagation of hardware induced error.

We extend the current framework of numerical analysis by removing the assumption that com-
putations in fast mode can be performed reliably. We propose a hardware agnostic error model that
can be used to analyze the hardware error propagation and algorithm’s convergence properties. In
particular, we analyzed the classical fixed point iteration and proposed several modifications that
can dramatically improve resilience. We perform a numerical comparison between the regular and
resilient fixed point methods. We demonstrate that the regular iteration is not convergent, while
the resilient one is convergent even when it encounters a very high rate of faults.
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