2 research outputs found

    Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling

    No full text
    Fluorescence correlation spectroscopy (FCS) has become an important tool in polymer science. Among various other applications the method is often applied to measure the hydrodynamic radius and the degree of fluorescent labeling of polymers in dilute solutions. Here we show that such measurements can be strongly affected by the molar mass dispersity of the studied polymers and the way of labeling. As model systems we used polystyrene and poly­(methyl methacrylate) synthesized by atom transfer radical polymerization or free-radical polymerization. Thus, the polymers were either end-labeled bearing one fluorophore per chain or side-labeled with a number of fluorophores per chain proportional to the degree of polymerization.The experimentally measured autocorrelation curves were fitted with a newly derived theoretical model that uses the Schulz–Zimm distribution function to describe the dispersity in the degree of polymerization. For end-labeled polymers having a molecular weight distribution close to Schulz–Zimm, the fits yield values of the number-average degree of polymerization and the polydispersity index similar to those obtained by reference gel permeation chromatography. However, for the side-labeled polymers such fitting becomes unstable, especially for highly polydisperse systems. Brownian dynamic simulations showed that the effect is due to a mutual dependence between the fit parameters, namely, the polydispersity index and the number-average molecular weight. As a consequence, an increase of the polydispersity index can be easily misinterpreted as an increase of the molecular weight when the FCS autocorrelation curves are fitted with a standard single component model, as commonly done in the community

    Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives

    No full text
    Two new terrylenediimide (TDI) chromophores with cyano substituents in the bay and core area (BCN-TDI and OCN-TDI, respectively) have been characterized by a wide range of techniques, and their applicability for stimulated emission depletion (STED) microscopy has been tested. By cyano substitution an increase of the fluorescence quantum yield and a decrease of the nonradiative rate constant is achieved and attributed to a reduced charge-transfer character of the excited state due to a lower electron density of the TDI core. For BCN-TDI, the substitution in the bay area induces a strong torsional twist in the molecule which, similar to phenoxy bay-perylenediimide (PDI), has a strong effect on the fluorescence lifetime but appears to prevent the aggregation that is observed for OCN-TDI. The single-molecule photobleaching stability of BCN- and OCN-TDI is lower than that of a reference TDI without cyano substitution (C7-TDI), although less so for OCN-TDI. The photophysical properties of the excited singlet state are only slightly influenced by the cyano groups. The observed intense stimulated emission, the pump–dump–probe experiments, and STED single-molecule imaging indicate that STED experiments with the cyano-substituted TDIs are possible. However, because of aggregation and more efficient photobleaching, the performance of BCN- and OCN-TDI is worse than that of the reference compound without cyano groups (C7-TDI). Bay-substituted TDIs are less suitable for STED microscopy
    corecore